Previous |  Up |  Next

Article

Title: Characterizing the maximum genus of a connected graph (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 1
Year: 1993
Pages: 177-185
.
Category: math
.
MSC: 05C10
MSC: 05C35
idZBL: Zbl 0788.05033
idMR: MR1205240
DOI: 10.21136/CMJ.1993.128386
.
Date available: 2009-09-24T09:28:36Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128386
.
Reference: [1] I. Anderson: Perfect matchings of a graph.J. Combinatorial Theory B 10 (1971), 183–186. Zbl 0172.48904, MR 0276105, 10.1016/0095-8956(71)90041-4
Reference: [2] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston, 1979. MR 0525578
Reference: [3] C. Berge: Théorie des graphes et ses applications.Dunod, Paris, 1958. MR 0102822
Reference: [4] J. A. Bondy and U.S.R. Murty: Graph Theory with Applications.MacMillan, London, 1976. MR 0411988
Reference: [5] R. A. Duke: The genus, regional number, and Betti number of a graph.Canad. J. Math 18 (1966), 817–822. Zbl 0141.21302, MR 0196731, 10.4153/CJM-1966-081-6
Reference: [6] P. Hall: On representatives of subsets.J. London Math. Soc. 10 (1935), 26–30. Zbl 0010.34503, 10.1112/jlms/s1-10.37.26
Reference: [7] N. P. Homenko and A. D. Glukhov: Single-component 2-cell embeddings and the maximum genus of a graph.In: Some Topological and Combinatorial Properties of Graphs, preprint 80.8, N. P. Homenko (ed.), IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) MR 0583197
Reference: [8] N. P. Homenko, N. A. Ostroverkhy and V. A. Kusmenko: The maximum genus of a graph.In: $\varphi $-Transformations of Graphs, N. P. Homenko (ed.), IM AN URSR, Kiev, 1973, pp. 180–207.
Reference: [9] M. Jungerman: A characterization of upper-embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401–406. Zbl 0379.05025, MR 0492309
Reference: [10] L. Nebeský: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31 (106) (1981), 604–613. MR 0631605
Reference: [11] E. A. Nordhaus, B. M. Stewart and A. T. White: On the maximum genus of a graph.J. Combinatorial Theory B 11 (1971), 258–267. MR 0286713, 10.1016/0095-8956(71)90036-0
Reference: [12] R. Rado: A theorem on independence relations.Quart. J. Math. (Oxford) 13 (1942), 83–89. Zbl 0063.06369, MR 0008250, 10.1093/qmath/os-13.1.83
Reference: [13] G. Ringel: The combinatorial map color theorem.J. Graph Theory 1 (1977), 141–155. Zbl 0386.05030, MR 0444509, 10.1002/jgt.3190010210
Reference: [14] J. Širáň: Duke’s theorem does not extend to signed graph embeddings.Discrete Math. 94 (1991), 233–238. MR 1138602, 10.1016/0012-365X(91)90029-2
Reference: [15] J. Širáň and M. Škoviera: Characterization of the maximum genus of a signed graph.J. Combinatorial Theory B 52 (1991), 124–146. MR 1109428, 10.1016/0095-8956(91)90099-6
Reference: [16] W. T. Tutte: The factorization of linear graphs.J. London Math. Soc. 22 (1947), 107–111. Zbl 0029.23301, MR 0023048
Reference: [17] A. T. White: Graphs, Groups, and Surfaces.North Holland, Amsterdam, 1973. Zbl 0268.05102
Reference: [18] R. J. Wilson: Introduction to Graph Theory.Longman Group, London, 1975. MR 0826772
Reference: [19] N. H. Xuong: How to determine the maximum genus of a graph.J. Combinatorial Theory B 26 (1979), 217–225. Zbl 0403.05035, MR 0532589, 10.1016/0095-8956(79)90058-3
.

Files

Files Size Format View
CzechMathJ_43-1993-1_15.pdf 694.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo