Previous |  Up |  Next

Article

Title: The divergence theorem and Perron integration with exceptional sets (English)
Author: Jurkat, Wolfgang B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 1
Year: 1993
Pages: 27-45
.
Category: math
.
MSC: 26A39
MSC: 26B20
idZBL: Zbl 0789.26005
idMR: MR1205229
DOI: 10.21136/CMJ.1993.128388
.
Date available: 2009-09-24T09:27:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128388
.
Reference: [1] H. Bauer: Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueschen.Monatsh. Math. 26 (1915), 153–198. MR 1548647, 10.1007/BF01999447
Reference: [2] H. Federer: Geometric Measure Theory.Springer, Berlin-Heidelberg-New-York, 1969. Zbl 0176.00801, MR 0257325
Reference: [3] J.Jarník, J. Kurzweil, Š. Schwabik: On Mawhin’s approach to multiple non-absolutely convergent integrals.Časopis pro Pěst. Mat. 108 (4) (1983), 356–380. MR 0727536
Reference: [4] J. Jarník and J. Kurzweil: A non-absolutely convergent integral which admits $C^1$-transformations.Casopis pro Pest. Mat. 109 (1984), 157–167. MR 0744873
Reference: [5] J. Jarník and J. Kurzweil: A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czech. Math. J. 35 (110) (1985), 116–139. MR 0779340
Reference: [6] J. Jarník and J. Kurzweil: A new and more powerful concept of the PU-integral.Czech. Math. J. 38 (113) (1988), 8–48. MR 0925939
Reference: [7] W.B. Jurkat and R.W. Knizia: A characterization of multi-dimensional Perron integrals and the Fundamental Theorem.(to appear). MR 1118008
Reference: [8] W.B. Jurkat and R.W. Knizia: Generalized absolutely continuous interval functions and multi-dimensional Perron integration.(to appear). MR 1182631
Reference: [9] W.B. Jurkat and D.J.F. Nonnenmacher: The general form of Green’s Theorem.(to appear). MR 1000158
Reference: [10] K. Karták and J. Mařík: A non-absolutely convergent integral in $E_m$ and the theorem of Gauss.Czech. Math. J. 15 (90) (1965), 253–259. MR 0177092
Reference: [11] J. Mařík: The surface integral.Czech. Math. J. 6 (81) (1956), 522–558. MR 0089891
Reference: [12] J. Mawhin: Generalized Riemann integral and the divergence theorem for differentiable vector fields.Proceedings of the International Christoffel Symposium, Birkhaeuser, Basel, 1981, pp. 704–714. MR 0661109
Reference: [13] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czech. Math. J. 31 (106) (1981), 614–632. Zbl 0562.26004, MR 0631606
Reference: [14] D.J.F. Nonnenmacher: Perron Integration auf allgemeinen Bereichen und der Satz von Gree.Diplomarbeit Univ. Ulm, 1988, pp. 1–117.
Reference: [15] W.F. Pfeffer: The divergence theorem.Trans. AMS 295 (1986), 665–685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0
Reference: [16] W.F. Pfeffer: The multidimensional fundamental theorem of calculus.J. Austral. Math. Soc. 43 (1987), 143–170. Zbl 0638.26011, MR 0896622, 10.1017/S1446788700029293
Reference: [17] W.F. Pfeffer and W.-C. Yang: A multidimensional variational integral and its extensions.preprint (1988). MR 1042534
Reference: [18] S. Saks: Theory of the Integral ($2^{\text{nd}}$ revised edition).Dover Publications, New-York, 1964. MR 0167578
Reference: [19] V.L. Shapiro: On Green’s theorem.J. London Math. Soc. 32 (1957), 261–269. Zbl 0079.27902, MR 0089275, 10.1112/jlms/s1-32.3.261
.

Files

Files Size Format View
CzechMathJ_43-1993-1_4.pdf 2.001Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo