Previous |  Up |  Next

Article

Title: Tolerances, interval orders, and semiorders (English)
Author: Janowitz, M. F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 44
Issue: 1
Year: 1994
Pages: 21-38
.
Category: math
.
MSC: 04A05
MSC: 06A06
MSC: 06B10
MSC: 06B99
idZBL: Zbl 0809.06001
idMR: MR1257933
DOI: 10.21136/CMJ.1994.128450
.
Date available: 2009-09-24T09:35:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128450
.
Reference: [1] H.-J. Bandelt: Tolerance relations on lattices.Bulletin Australian Mathematical Society 23 (1981), 367–381. Zbl 0449.06005, MR 0625179, 10.1017/S0004972700007255
Reference: [2] H.-J. Bandelt: Toleranzrelationen als Galoisverbindungen.Acta Universitatis Szegediensis. Acta Scientarum Mathematicarum 46 (1983), 55–58. Zbl 0535.06004, MR 0739022
Reference: [3] G. Birkhoff: Lattice theory, 3rd ed..American Math. Society, Providence, 1967. MR 0227053
Reference: [4] J.-P. Doignon: Partial structures of preference.Nonconventional preference relations in decision making, M. Roubens and J. Kacprzyk (eds.), Springer-Verlag, Berlin, 1982. MR 1133644
Reference: [5] J.-P. Doignon, A. Ducamp and J.-C. Falmagne: On the separation of two relations by a biorder or a semiorder.Mathematical Social Sciences 13 (1987), 1–18. MR 0881699, 10.1016/S0165-4896(87)80001-X
Reference: [6] P. C. Fishburn: Interval indifference with unequal indifference intervals.Journal of Mathematical Psychology 7 (1970), 144–149. MR 0253942, 10.1016/0022-2496(70)90062-3
Reference: [7] P. C. Fishburn: Interval orders and interval graphs.Wiley-Interscience, New York, 1985. Zbl 0551.06001, MR 0776781
Reference: [8] L. Guttman: A basis for scaling quantitative data.American Sociological Review 9 (1944), 139–150. MR 0010352, 10.2307/2086306
Reference: [9] M. F. Janowitz: Tolerances and congruences on lattices.Czechoslovak Mathematics Journal 36 (III) (1986), 108–115. Zbl 0598.06004, MR 0822874
Reference: [10] K. H. Kim, D. G. Rogers and F. W. Roush: Similarity measures and semiorders.Proceedings of the 10th Southeast Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantuim XXII–XXIV, Utilitas Mathematica, Winnipeg, 1978.
Reference: [11] R. D. Luce: Semiorders and a theory of utility discrimination.Econometrica 24 (1956), 178–191. Zbl 0071.14006, MR 0078632, 10.2307/1905751
Reference: [12] F. S. Roberts: Measurement theory.Encyclopedia of Mathematics and its Applications, (Vol. 7), Addison Wesley, Reading, MA, 1979. Zbl 0432.92001, MR 0551364
Reference: [13] I. G. Rosenberg and D. Schweigert: Compatible orderings and tolerances of lattices.in: orders: Description and Roles, M. Pouzet and D. Richard (eds.), North-Holland, Amsterdam, 1982. MR 0779849
Reference: [14] B. Roy: Préférence, indifférence, incomparabilité.Documents du LAMSADE, No. 9, Université de Paris-Dauphine, 1980.
Reference: [15] M. Roubens and Ph. Vincke: A definition of partial interval orders.in: Trends in Mathematical Psychology, E. Degreef and J. van Buggenhaut (eds.), North-Holland, Amsterdam, 1984. MR 0787066
Reference: [16] N. Weiner: Contribution to the theory of relative position.Proceedings Cambridge Philosophical Society 17 (1914), 441–449.
Reference: [17] E. C. Zeeman: The topology of the brain and visual perception.In: The topology of 3-manifolds, M. K. Fort (ed.), Prentice-Hall, Englewood Cliffs, 1961. MR 0140374
Reference: [18] B. Zelinka: Tolerance in algebraic structures.Czechoslovak Mathematical Journal 20 (1970), 240–256. Zbl 0197.01002, MR 0260653
.

Files

Files Size Format View
CzechMathJ_44-1994-1_3.pdf 1.333Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo