Previous |  Up |  Next

Article

Title: On the solution set of nonconvex subdifferential evolution inclusions (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 44
Issue: 3
Year: 1994
Pages: 481-500
.
Category: math
.
MSC: 34A60
MSC: 34G20
MSC: 34H05
MSC: 35A07
MSC: 49J20
MSC: 49J52
idZBL: Zbl 0868.34010
idMR: MR1288166
DOI: 10.21136/CMJ.1994.128477
.
Date available: 2009-09-24T09:40:47Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128477
.
Reference: [1] H. Attouch: Variantional Convergence for Functionals and Operators.Pitman, London, 1984.
Reference: [2] J.-P. Aubin and A. Cellina: Differential Inclusions.Springer, Berlin, 1984. MR 0755330
Reference: [3] J.-P. Aubin and J. Ekeland: Applied Nonlinear Analysis.Wiley, New York, 1983.
Reference: [4] E. Balder: Necessary and sufficient conditions for $L_1$-strong-weak lower semicontinuity of integral functionals.Nonl. Anal. — TMA 11 (1987), 1399–1404. MR 0917861, 10.1016/0362-546X(87)90092-7
Reference: [5] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1976. Zbl 0328.47035, MR 0390843
Reference: [6] M. Benamara: Points Extremaux Multi-applications et Fonctionelles Integrales.These du 3ème cycle, Université de Grenoble, 1975.
Reference: [7] H. Brezis: Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert.North Holland, Amsterdam, 1973.
Reference: [8] G. Choquet: Lectures on Analysis, Vol. II.Benjamin, New York, 1969. Zbl 0181.39602
Reference: [9] F. S. DeBlassi and G. Pianigiani: Non-convex valued differential inclusions in Banach spaces.J. Math. Anal. Appl. 157 (1991), 469–494. MR 1112329, 10.1016/0022-247X(91)90101-5
Reference: [10] J. Diestel and J. Uhl: Vector Measures, Math Surveys, Vol. 15.A.M.S., Providence, R.I., 1977. MR 0453964
Reference: [11] A. Fryszkowski: Continuous selections for a class of nonconvex multivalued maps.Studia Math 78 (1983), 163–174. MR 0730018, 10.4064/sm-76-2-163-174
Reference: [12] C. Henry: Differential equations with discontinuous right-hand side for planning procedures.J. Econ. Theory 4 (1972), 545–551. MR 0449534, 10.1016/0022-0531(72)90138-X
Reference: [13] F. Hiai and H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions.J. Multiv. Anal. 7 (1977), 149–182. MR 0507504, 10.1016/0047-259X(77)90037-9
Reference: [14] R. Holmes: Geometric Functional Analysis and its Applications.Springer, Berlin, 1975. Zbl 0336.46001, MR 0410335
Reference: [15] E. Klein and A. Thompson: Theory of Correspondences.Wiley, New York, 1984. MR 0752692
Reference: [16] D. Kravvaritis and N. S. Papageorgiou: Multivalued perturbations of subdifferential type evolution equations in Hilbert spaces.J. Diff. Eqns. 76 (1988), 238–255. MR 0969423, 10.1016/0022-0396(88)90073-3
Reference: [17] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space.J. Diff. Eqns. 26 (1977), 347–374. MR 0508661, 10.1016/0022-0396(77)90085-7
Reference: [18] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437–464. Zbl 0634.28005, MR 0914749
Reference: [19] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.intern. J. Math and Math. Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516
Reference: [20] N. S. Papageorgiou: Differential inclusions with state constraints.Proceedings of the Edinburgh Math. Soc. 32 (1989), 81–98. Zbl 0704.49009, MR 0981995, 10.1017/S0013091500006933
Reference: [21] N. S. Papageorgiou: On evolution inclusions associated with time dependent convex subdifferentials.Comm. Math. Univ. Carol. 31 (1990), 517–527. Zbl 0711.34076, MR 1078486
Reference: [22] A. Plis: Trajectories and quasi-trajectories of an orientor field.Bull. Acad. Polon. Sci. 10 (1962), 529–531.
Reference: [23] A. Tolstonogov: Extreme continuous selectors of multivalued maps and the bang-bang principle for evolution inclusions.Soviet Math. 317 (1991), 1–8.
Reference: [24] D. Wagner: Survey of measurable selection theorems.SIAM J. Cont. Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391, 10.1137/0315056
Reference: [25] J. Watanabe: On certain nonlinear evolution equations.J. Math. Soc. Japan 25 (1973), 446–463. Zbl 0253.35053, MR 0326522, 10.2969/jmsj/02530446
Reference: [26] S. Yotsutani: Evolution equations associated with subdifferentials.J. Math. Soc. Japan 31 (1978), 623–646. MR 0544681, 10.2969/jmsj/03140623
.

Files

Files Size Format View
CzechMathJ_44-1994-3_7.pdf 2.185Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo