Previous |  Up |  Next

Article

Title: On nonconvex valued Volterra integral inclusions in Banach spaces (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 44
Issue: 4
Year: 1994
Pages: 631-648
.
Category: math
.
MSC: 34K30
MSC: 45G10
MSC: 45N05
MSC: 47H05
MSC: 47H99
MSC: 47N20
idZBL: Zbl 0822.45008
idMR: MR1295140
DOI: 10.21136/CMJ.1994.128485
.
Date available: 2009-09-24T09:42:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128485
.
Reference: [1] J. Banas and K. Goebel: Measures of Noncompactness in Banach Spaces.Marcel-Dekker, New York, 1980. MR 0591679
Reference: [2] M. Banamara: Points Extremaux, Multi-applications et Fonctionelles Intégrales.Thèse du 3ème cycle, Universtité de Grenoble, 1975.
Reference: [3] N. Bourbaki: Expaces Vectoriels Topologiques.Hermann, Paris, 1967.
Reference: [4] A. Bressan and G. Colombo: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69–86. MR 0947921, 10.4064/sm-90-1-69-86
Reference: [5] A.Bulgakov and L. Lyapin: Some propersties of the set of solutions of Volterra-Hammerstein integral inclusions.Differential Equations 14 (1979), 1043–1048.
Reference: [6] P.–V. Chuong: Existence of solutions for random multivalued Volterra integral inclusions.J. Integral Egns. 7 (1984), 143–173. MR 0756552
Reference: [7] A. Friedman: Parabolic Partial Differential Equations.Krieger, New York, 1976.
Reference: [8] H.–P. Heinz: Theorems of Ascoli-type involving measures of noncompactness.Nonl. Anal. - TMA 5 (1981), 277–286. Zbl 0456.54007, MR 0607810, 10.1016/0362-546X(81)90032-8
Reference: [9] F. Hiai and H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions.J. Multiv. Anal. 7 (1977), 149–183. MR 0507504, 10.1016/0047-259X(77)90037-9
Reference: [10] C. Himmelberg: Measurable relations.Fund. Math. 87 (1975), 59–71. Zbl 0296.28003, MR 0367142, 10.4064/fm-87-1-53-72
Reference: [11] D. Kandilakis and N.S. Papageorgiou: On the properties of the Aumann integral with applictions to differential inclusions and control systems.Czech. Math. Jour. 39 (1989), 1–15. MR 0983479
Reference: [12] M. Kisielewicz: Multivalued differential equations in a separable Banach space.J. Optim. Theory Appl. 37 (1982), 239–249. MR 0663523, 10.1007/BF00934769
Reference: [13] E. Klein and A. Thompson: Theory of Correspondences.Wiley, New York, 1984. MR 0752692
Reference: [14] G. Ladas and V. Laksmikantham: Differential Equations in Abstract Spaces.Acad. Press, New York, 1972. MR 0460832
Reference: [15] H. Mönch: Boundary vale problems for ordinary differential equations of second order in Banach spaces.Nonl. Anal. – TMA 4 (1980), 985–999. 10.1016/0362-546X(80)90010-3
Reference: [16] N.S. Papageorgiou: On the theory of Banach space valued multifunctions I: Interation and conditional expectations.J. Multiv. Anal 17 (1985), 185–206. MR 0808276, 10.1016/0047-259X(85)90078-8
Reference: [17] N.S. Papageorgiou: On multivalued evolution equations and differential inclusions in Banach spaces.Comm. Math. Univ. S. P. 36 (1987), 21–39. Zbl 0641.47052, MR 0892378
Reference: [18] N.S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math and Math Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516
Reference: [19] N.S. Papageorgiou: On measurable multifunctions with application to random multivalued equations.Math. Japonica 32 (1987), 437–464. MR 0914749
Reference: [20] N.S. Papageorgiou: Volterra integral inclusions in Banach spaces.J. Integral Equations and Appl. 1 (1988), 65–81. Zbl 0659.45010, MR 0955163, 10.1216/JIE-1988-1-1-65
Reference: [21] N.S. Papageorgiou: Decomposable sets in the Lebesgue-Bochner spaces.Comm. Math. Univ. S. P. 37 (1988), 49–62. Zbl 0679.46032, MR 0942305
Reference: [22] N.S. Papageorgiou: On integral inclussions of Volterra type in Banach spaces.Czechoslovak Math. J. 42 (117) (1992), 693–714. MR 1182201
Reference: [23] R. Ragimkhanov: The existence of solutions to an integral equation with multivalued right-hand side.Siberian Math. Journ. 17 (1976), 533–536. 10.1007/BF00967875
Reference: [24] E. Schecter: Evolution generated by continuous dissipative plus compact operator.Bull. London Math. Soc. 13 (1981), 303–308. MR 0620042, 10.1112/blms/13.4.303
Reference: [25] S. Szufla: On the existence of solutions of Volterra integral equations in Banach space.Bull. Polish Acad. Sci. 22 (1974), 1211–1213. Zbl 0329.45003, MR 0380306
Reference: [26] H. Tanabe: Equations of Evolution.Pitman, London, 1977.
Reference: [27] A. Tolstonogov: Extreme continuous selectors of multivalued maps and the bang-bang principle for evolution inclusions.Soviet Math. Dokl. 317 (1991), 1–8. MR 1121349
Reference: [28] D. Wagner: Survey of measurable selection theorems.SIAM J. Contr. Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391, 10.1137/0315056
Reference: [29] A. Wilansky: Modern Methods in Topological Vector Spaces.(1978), McGraw-Hill, New York. Zbl 0395.46001, MR 0518316
.

Files

Files Size Format View
CzechMathJ_44-1994-4_6.pdf 2.045Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo