Previous |  Up |  Next

Article

Title: Angular limits of double layer potentials (English)
Author: Král, Josef
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 2
Year: 1995
Pages: 267-292
.
Category: math
.
MSC: 31B10
MSC: 31B25
MSC: 49Q15
idZBL: Zbl 0838.31006
idMR: MR1331464
DOI: 10.21136/CMJ.1995.128517
.
Date available: 2009-09-24T09:47:01Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128517
.
Reference: [1] Ju. D. Burago, V.G. Maz’ya: Some problems of potential theory and function theory for domains with nonregular boundaries.Zapiski Naučnych Seminarov LOMI 3 (1967). (Russian)
Reference: [2] M. Chlebík: Tricomi potencials.Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha, 1988. (Slovak)
Reference: [3] M. Dont: Non-tangential limits of the double layer potentials.Časopis pro pěstování matematiky 97 (1972), 231–258. Zbl 0237.31012, MR 0444975
Reference: [4] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44–76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6
Reference: [5] H. Federer: Geometrie Measure Theory, Springer-Verlag.1969.
Reference: [6] J. Král: On the logarithmic potential.Comment. Math. Univ. Carolinae 3 (1962), no. 1, 3–10. MR 0159008
Reference: [7] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [8] J. Král: Limits of double layer potentials.Accad. Naz. dei Lincei, Rendiconti Cl. Sci. fis. mat. e. natur., ser. 8, vol. 48 (1970), 39–42. MR 0274788
Reference: [9] J. Král: Flows of heat and the Fourier problem.Czechoslovak Math. J. 20(95) (1970), 556–598. MR 0271554
Reference: [10] J. Král: On boundary behaviour of double layer potentials.Trudy Seminara S.L. Soboleva, Novosibirsk, 1976, pp. 19–34. (Russian)
Reference: [11] J. Král: Integral Operators in Potential Theory.Lecture Notes in Math., vol. 823, Springer-Verlag, 1980. MR 0590244
Reference: [12] J. Král, J. Lukeš: Integrals of the Cauchy type.Czechoslovak Math. J. 22 (1972), 663–682. MR 0338377
Reference: [13] J. Lukeš: A note on integral of the Cauchy type.Comment. Math. Univ. Carolinae 9 (1968), 563–570. MR 0243011
Reference: [14] J.D. Machavariani: On lower and upper nontangential limits of the logarithmic potential of a double distribution.Amer. Math. Soc. Transl. 131 (1986), no. 2, 109–120. 10.1090/trans2/131/10
Reference: [15] V.G. Maz’ya: Boundary Integral Equations, in Analysis IV, Encyclopaedia of Mathematical Sciences.vol. 27, Springer-Verlag, 1991.
Reference: [16] S. Saks: Theory of the Integral.Dover Publications, New York, 1964. MR 0167578
Reference: [17] J. Veselý: On the limits of the potential of the double distribution.Comment. Math. Univ. Carolinae 10 (1969), no. 2, 189–194. MR 0249654
Reference: [18] J. Veselý: Angular limits of double layer potentials (in Czech with an English summary).Časopis pro pěstování matematiky 95 (1970), 379–401. MR 0382676
Reference: [19] W.P. Ziemer: Weakly Differentiable Functions.Springer-Verlag, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_45-1995-2_9.pdf 2.501Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo