Previous |  Up |  Next

Article

Title: Decaying positive entire solutions of the $p$-Laplacian (English)
Author: Huang, Yin Xi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 2
Year: 1995
Pages: 205-220
.
Category: math
.
MSC: 34A34
MSC: 35B05
MSC: 35B40
MSC: 35B45
MSC: 35J60
idZBL: Zbl 0841.35034
idMR: MR1331458
DOI: 10.21136/CMJ.1995.128523
.
Date available: 2009-09-24T09:46:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128523
.
Reference: [1] W. Allegretto: On positive $L^\infty $ solutions of a class of elliptic systems.Math. Z. 191 (1986), 479–484. MR 0824448, 10.1007/BF01162722
Reference: [2] W. Allegretto and Y.X. Huang: Existence of positive global solutions of mixed sublinear-superlinear problems.Can. J. Math. 40 (1988), 1222–1242. MR 0973518, 10.4153/CJM-1988-052-4
Reference: [3] M.-F. Bidaut-Veron: Local and global behavior of solutions of quasilinear equations of Emden-Fowler type.Arch. Rat. Mech. Anal. 107 (1989), 293–324. MR 1004713, 10.1007/BF00251552
Reference: [4] R. Dalmasso: Solutions positives globales d’équations elliptiques semi-linéaires singulières.Bull. Sc. Math. Ser. 2, 112 (1988), 65–76. Zbl 0647.35028, MR 0942799
Reference: [5] A.L. Edelson: Entire solutions of singular elliptic equations.J. Math. Anal. Appl. 139 (1989), 523–532. Zbl 0679.35003, MR 0996976, 10.1016/0022-247X(89)90126-1
Reference: [6] A. Friedman and L. Veron: Singular solutions of some quasilinear elliptic equations.Arch. Rat. Mech. Anal. 96 (1986), 259–287. MR 0855755, 10.1007/BF00251804
Reference: [7] Y. Furusho: On decaying entire positive solutions of semilinear elliptic equations.Japan. J. Math. 14 (1988), 97–118. Zbl 0676.35028, MR 0945620, 10.4099/math1924.14.97
Reference: [8] D. Gilbarg and N.S. Trudinger: Elliptic Partial Differential Equations of Second Order, 2nd edition.Springer-Verlag, N.Y., 1983.. MR 0737190
Reference: [9] M. Guedda and L. Veron: Local and global properties of solutions of quasilinear elliptic equations.J. Diff. Equa. 76 (1988), 159–189. MR 0964617, 10.1016/0022-0396(88)90068-X
Reference: [10] N. Kawano, J. Satsuma and S. Yotsutani: Existence of positive entire solutions of an Emden-type elliptic equation.Funkcialaj Ekvacioj 31 (1988), 121–145. MR 0951770
Reference: [11] T. Kura: The weak supersolution-subsolution method for second order quasilinear elliptic equations.Hiroshima Math. J. 19 (1989), 1–36. Zbl 0735.35056, MR 1009660, 10.32917/hmj/1206129479
Reference: [12] T. Kusano and C.A. Swanson: Entire positive solutions of singular semilinear elliptic equations.Japan. J. Math. 11 (1985), 145–155. MR 0877461, 10.4099/math1924.11.145
Reference: [13] T. Kusano and C.A. Swanson: Decaying entire positive solutions of quasilinear elliptic equations.Mh. Math. 101 (1986), 39–51. MR 0830609, 10.1007/BF01326845
Reference: [14] T. Kusano and C.A. Swanson: Radial entire solutions of a class of quasilinear elliptic equations.J. Diff. Eq. 83 (1990), 379–399. MR 1033194, 10.1016/0022-0396(90)90064-V
Reference: [15] T. Kusano and W.F. Trench: Global existence of solutions of mixed sublinear-superlinear differential equations.Hiroshima Math. J. 16 (1986), 597–606. MR 0867582, 10.32917/hmj/1206130310
Reference: [16] Y. Li and W.M. Ni: On conformal scalar curvature equations in $R^n$.Duke Math. J. 57 (1988), 895–924. MR 0975127, 10.1215/S0012-7094-88-05740-7
Reference: [17] W.M. Ni: Some aspects of semilinear elliptic equations in $R^n$.Nonlinear Diffusion Equations and Their Equalibrium States, Vol. 2 W.M. Ni, L.A. Peletier and J. Serrin (eds.), 1988, pp. 171–205. MR 0956087
Reference: [18] W.M. Ni and J. Serrin: Nonexistence theorems for singular solutions of quasilinear partial differential equations.Comm. Pure Appl. Math. 38 (1986), 379–399. MR 0829846, 10.1002/cpa.3160390306
Reference: [19] J. Serrin: Local behavior of solutions of quasilinear equations.Acta Math. 111 (1964), 247–302. MR 0170096, 10.1007/BF02391014
Reference: [20] P. Tolksdorf: On the Dirichlet problem for quasilinear equations in domains with conical boundary points.Comm. P.D.E. 8 (1983), 773–817. Zbl 0515.35024, MR 0700735, 10.1080/03605308308820285
.

Files

Files Size Format View
CzechMathJ_45-1995-2_3.pdf 1.278Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo