Previous |  Up |  Next

Article

Title: Oscillation theorems for certain second order perturbed nonlinear difference equations (English)
Author: Thandapani, E.
Author: Pandian, S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 4
Year: 1995
Pages: 757-766
.
Category: math
.
MSC: 39A10
MSC: 39A12
idZBL: Zbl 0848.39002
idMR: MR1354932
DOI: 10.21136/CMJ.1995.128557
.
Date available: 2009-09-24T09:52:38Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128557
.
Reference: [1] R.P. Agarwal: Difference Equations and Inequalities.Marcel Dekker, New York, 1992. Zbl 0925.39001, MR 1155840
Reference: [2] S.R. Grace and B.S. Lalli: Oscillation theorems for certain second order perturbed nonlinear differential equations.J. Math. Anal. Appl. 77 (1980), 205–214. MR 0591271, 10.1016/0022-247X(80)90270-X
Reference: [3] J.R. Graef, S.M. Rankin and P.W. Spikes: Oscillation theorems for perturbed nonlinear differential equations.J. Math. Anal. Appl. 65 (1978), 375–390. MR 0506315, 10.1016/0022-247X(78)90189-0
Reference: [4] J.W. Hooker and W.T. Patula: A second order nonlinear difference equation: Oscillation and asymptotic behavior.J. Math. Anal. Appl. 91 (1983), 9–29. MR 0688528, 10.1016/0022-247X(83)90088-4
Reference: [5] M.R.S. Kulenovic and M. Budincevic: Asymptotic analysis of nonlinear second order difference equation.An. Stin. Univ. Iasi 30 (1984), 39–52. MR 0800139
Reference: [6] J. Popenda: Oscillation and nonoscillation theorems for second order difference equations.J. Math. Anal. Appl. 123 (1987), 34–38. Zbl 0612.39002, MR 0881528, 10.1016/0022-247X(87)90291-5
Reference: [7] B. Szmanda: Nonoscillation, oscillation and growth of solutions of nonlinear difference equations of second order.J. Math. Anal. Appl. 109 (1985), 22–30. Zbl 0589.39003, MR 0796040, 10.1016/0022-247X(85)90174-X
Reference: [8] B. Szmanda: Oscillation theorems for nonlinear second order difference equations.J. Math. Anal. Appl. 79 (1981), 90–95. Zbl 0455.39004, MR 0603378, 10.1016/0022-247X(81)90011-1
Reference: [9] E. Thandapani: Oscillation theorems for perturbed nonlinear second order difference equations.J. Computers and Mathematics,  (to appear). Zbl 0807.39002, MR 1284245
Reference: [10] E. Thandapani: Oscillatory behavior of solutions of second order nonlinear difference equations.J. Math. Phy. Sci. 25 (1991), 457–464.
Reference: [11] E. Thandapani: Oscillation theorems for second order damped nonlinear difference equations.Czech J. Math (to appear). Zbl 0838.39003, MR 1331469
Reference: [12] E. Thandapani: Oscillation criteria for certain second order difference equations.ZAA 11 (1992), 425–429. Zbl 0787.39002, MR 1266155
Reference: [13] E. Thandapani and S. Pandian: On the oscillatory behavior of solutions of second order nonlinear difference equations.ZAA 13 (1994), 347–358. MR 1287156
Reference: [14] C.C. Yeh: Oscillation criteria for second order nonlinear perturbed differential equations.J. Math. Anal. Appl. 138 (1989), 157–165. Zbl 0668.34038, MR 0988326, 10.1016/0022-247X(89)90326-0
.

Files

Files Size Format View
CzechMathJ_45-1995-4_13.pdf 1.476Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo