Previous |  Up |  Next

Article

Title: On the interchange heuristic for locating centers and medians in a graph (English)
Author: Plesník, Ján
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 37
Issue: 2
Year: 1987
Pages: 209-216
.
Category: math
.
MSC: 05C35
MSC: 05C38
MSC: 68R10
idZBL: Zbl 0642.05030
idMR: MR899438
.
Date available: 2009-09-25T10:01:47Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128709
.
Reference: [1] BEHZAD M., CHARTRAND, G, LESNIAK-FOSTER L.: Graphs and Digraphs.Pгindle, Webeг and Schmidt, Boston, 1979. MR 0525578
Reference: [2] CHRISTOFIDES N.: Graph Theoгy: an algorithmic approach.Academic Press, London, 1975. MR 0429612
Reference: [3] HAKIMI S. L.: Optimal locations of switching centers and the absolute centers and medians of a graph.Operations Res. 12, 1964, 450-459.
Reference: [4] HAKIMI S. L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems.Operations Res. 13, 1965, 462-475. Zbl 0135.20501, MR 0186497
Reference: [5] HALPERN J., MAIMON O.: Algorithms for the m-center problems; a survey.European J. Operational Res. 10, 1982, 90-99. Zbl 0481.90021, MR 0655498
Reference: [6] HARARY F.: Graph Theory.Addison-Wesley, Reading, 1969. Zbl 0196.27202, MR 0256911
Reference: [7] HOCHBAUM D. S., SHMOYS D. B.: A best possible heuristic for the k-center problem.Math. Oper. Res. 10, 1985, 180-184. Zbl 0565.90015, MR 0793876
Reference: [8] HOCHBAUM D. S., SHMOYS D. B.: Powers of graphs: a powerfull approximation algorithm technique for bottleneck problems.J. Assoc. Comput. Mach. (to appear).
Reference: [9] HSU W. L., NEMHAUSER G. L.: Easy and hard bottleneck location problems.Discrete Appl. Math. 1, 1979, 209-215. Zbl 0424.90049, MR 0549500
Reference: [10] JARVINEN P., RAJALA J., SINERVO H.: A branch-and-bound algorithm for seeking the p-median.Operations Res. 20,1972, 173-182.
Reference: [11] KARIV O., HAKIMI S. L.: An algorithmic approach to network location problems. I: the p-centers.SIAM J. Appl. Math. 37, 1979, 513-538. Zbl 0432.90074, MR 0549138
Reference: [12] KARIV O., HAKIMI S. L.: An algorithmic approach to network location problems. II: the p-medians.SIAM J. Appl. Math. 37, 1979, 539-560. Zbl 0432.90075, MR 0549139
Reference: [13] MINIEKA E.: Optimization Algorithms for Networks and Graphs.Marcel Dekker, New York, 1978. Zbl 0427.90058, MR 0517268
Reference: [14] MINIEKA E.: The centers and medians of a graph.Operations Res. 25, 1977, 641-650. Zbl 0383.90046, MR 0524906
Reference: [15] PLESNIK J.: On the computational complexity of centers locating in a graph.Aplikace Mat. 25, 1980, 445-452. Zbl 0454.68026, MR 0596851
Reference: [16] REVELLE C., MARKS D., LIEBMAN J. C.: An analysis of private and public sector location models.Management Sci. 16, 1970, 692-707. Zbl 0195.21901
Reference: [17] TANSEL B. C., FRANCIS R. L., LOWE T. J.: Location on networks: a survey; part I: the p-center and p-median problems.Management Sci. 29, 1983, 482-497. MR 0704593
Reference: [18] TANSEL B. C, FRANCIS R. L., LOWE T. J.: Location on networks: a survey; part II: exploiting tree network structure.Management Sci. 29, 1983. 498-511. MR 0704594
Reference: [19] TEITZ M. B., BART B.: Heuristic methods for estimating the generalized vertex median of a weighted graph.Operations Res. 16, 1968, 955 -961. Zbl 0165.22804
Reference: [20] WONG R. T.: Location and network design.In: Combinatorial Optimization: annotated bibliographies. Wiley, New York, 1985, 129- 147. Zbl 0556.90018, MR 0807391
Reference: [21] DYER M. E., FRIEZE A. M.: A simple heuristic for the p-centre problem.Oper. Res. Lett. 3, 1985, 285-288. Zbl 0556.90019, MR 0797340
.

Files

Files Size Format View
MathSlov_37-1987-2_10.pdf 668.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo