Previous |  Up |  Next


[1] BUCKLEY F.-HARARY F.: Distance in Graphs. Addison-Wesley, Reading, 1990. Zbl 0688.05017
[2] CVETKOVIC D. M.-SIMIC S. K.: Graph theoretic results obtained by the support of the expert system "GRAPH". Bull. Acad. Serbe Sci. Arts CI. Sci. Math. Natur. 107 (1994), 19-41. MR 1345431
[3] DOBRYNIN A. A.: Graphs having the maximal value of the Szeged index. Croat. Chem. Acta 70 (1997), 819-825.
[4] DOBRYNIN A.-GUTMAN I.: Solving a problem connected with distances in graphs. Graph Theory Notes New York 28 (1995), 21-23.
[5] GUTMAN I.: A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes New York 27 (1994), 9-15.
[6] GUTMAN I.-YEH Y. N.: The sum of all distances in bipartite graphs. Math. Slovaca 45 (1995), 327-334. MR 1387048 | Zbl 0853.05032
[7] GUTMAN I. YEH Y. N. LEE S. L. LUO Y. L.: Some recent results in the theory of the Wiener number. Indian J. Chem. 32A (1993), 651-661.
[8] KHADIKAR P. V.-DESHPANDE N. V.-KALE P. P.-DOBRYNIN A.-GUTMAN I.-DOMOTOR G.: The Szeged index and an analogy with the Wiener index. J. Chem. Inf. Comput. Sci. 35 (1995), 547-550.
[9] KLAVŽAR S. RAJAPAKSE A. GUTMAN I.: On the Szeged and the Wiener index of graphs. Appl. Math. Lett. 9(5) (1996), 45-49. MR 1415471
[10] YEH Y. N.-GUTMAN I.: On the sum of all distances in composite graphs. Discrete Math. 135 (1994), 359-365. MR 1310892 | Zbl 0814.05033
Partner of
EuDML logo