Previous |  Up |  Next

Article

Title: Self-dual non-Hamiltonian polyhedra with only two types of faces (English)
Author: Owens, Peter John
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 48
Issue: 2
Year: 1998
Pages: 137-148
.
Category: math
.
MSC: 05C38
MSC: 05C45
MSC: 52B10
idZBL: Zbl 0937.05052
idMR: MR1647654
.
Date available: 2009-09-25T11:28:52Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128975
.
Reference: [1] BONDY J. A.-MURTY U. S. R.: Graph Theory with Applications.Macmillan, London, 1976. Zbl 1226.05083, MR 0411988
Reference: [2] GRÜNBAUM B.-WALTHER H.: Shortness exponents of families of graphs.J. Combin. Theorу Ser. A 14 (1973), 364-385. Zbl 0263.05103, MR 0314691
Reference: [3] HARANT J.-WALTHER H.: Some new results about the shortness exponent in polyhedral graphs.Časopis Pěst. Mat. 112 (1987), 114-122. Zbl 0642.05039, MR 0897639
Reference: [4] HARANT J.-OWENS P. J.-TKÁČ M.-WALTHER H.: 5-regular 3-polytopal graphs with edges of only two types and shortness exponents less than one.Discгete Math. 150 (1996), 143-153. Zbl 0852.05056, MR 1392727
Reference: [5] JENDROĽ S.-OWENS P. J.: Pentagonal 3-polytopal graphs with edges of only two types and shortness parameters.Discrete Math. 137 (1995), 251-263. Zbl 0823.05035, MR 1312457
Reference: [6] OWENS P. J.: Regular planar graphs with faces of only two types and shortness parameters.J. Graph Theory 8 (1984), 253-275. Zbl 0541.05037, MR 0742879
Reference: [7] OWENS P. J.: Shortness parameters for planar graphs with faces of only one type.J. Graph Theory 9 (1985), 381-395. Zbl 0584.05047, MR 0812405
Reference: [8] OWENS P. J.-WALTHER H.: Hamiltonicity in multitriangular graphs.Discuss. Math. - Graph Theory 15 (1995), 77-88. Zbl 0831.05040, MR 1344538
Reference: [9] TKÁČ M.: On shortness coefficients of simple 3-polytopal graphs with only one type of faces besides triangles.Discrete Math. 128 (1994), 407-413. Zbl 0798.05018, MR 1271885
Reference: [10] WALTHER H.: Note on two problems of J. Zaks concerning hamiltonian 3-polytopes.Discrete Math. 33 (1981), 107-109. Zbl 0476.05051, MR 0597235
Reference: [11] WALTHER H.: Longest cycles in polyhedral graphs.Israel J. Math. 83 (1993), 203-212. Zbl 0784.05059, MR 1239722
.

Files

Files Size Format View
MathSlov_48-1998-2_3.pdf 823.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo