Previous |  Up |  Next

Article

Title: B-groups of order a product of two distinct primes (English)
Author: Potočnik, Primož
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 51
Issue: 1
Year: 2001
Pages: 63-67
.
Category: math
.
MSC: 20B15
MSC: 20B20
idZBL: Zbl 0991.20001
idMR: MR1817723
.
Date available: 2009-09-25T11:49:08Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129010
.
Reference: [1] BERCOV R. D.: The double transitivity of a class of permutation groups.Canad. J. Math. 17 (1965), 480-493. Zbl 0132.27101, MR 0174624
Reference: [2] BURNSIDE W.: Theory of Groups of Finite Order.(2nd ed.), Cambridge University Press. London. 1911. MR 1575665
Reference: [3] HUPPERT B.: Endlische Gruppen I.Springer-Verlag, Berlin, 1967. MR 0224703
Reference: [4] MARUŠIČ D.-SCAPELLATO R.: Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup.J. Graph Theory 16 (1992), 375-387. Zbl 0764.05035, MR 1174460
Reference: [5] MARUŠIČ D.-SCAPELLATO. R.: Imprimitive representations of SL(2,2k).J. Combin. Theory Ser. B 58 (1993), 46-57. MR 1214891
Reference: [6] MARUŠIČ D.-SCAPELLATO R.: Classifying vertex-transitive graphs whose order is a product of two primes.Combinatorica 14 (1994), 187-201. Zbl 0799.05027, MR 1289072
Reference: [7] NAGAI O.: On transitive groups that contain non-Abelian regular subgroups.Osaka Math. J. 13 (1961), 199-207. Zbl 0103.01403, MR 0130303
Reference: [8] NAGAO H.: On transitive groups of order 3p.J. Math. Osaka City Univ. 14 (1963), 23-33. MR 0158003
Reference: [9] PRAEGER C.-XU M. Y.: Vertex primitive graphs of order a product of two distinct primes.J. Combin. Theory Ser. B 59 (1993), 245-266. Zbl 0793.05072, MR 1244933
Reference: [10] PRAEGER C.-WANG R. J.: Symmetric graphs of order a product of two distinct primes.J. Combin. Theory Ser. B 58 (1993), 299-318. Zbl 0793.05071, MR 1223702
Reference: [11] SCHUR I.: Zur Theorie der Einfach Transitiven Permutations gruppen.Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 598-623.
Reference: [12] SCOTT W. R.: Solvable factorizable groups.Ilinois J. Math 1 (1957), 389-394. Zbl 0077.24902, MR 0094400
Reference: [13] SOOMRO K. D.: Nonabelian Burnside groups of certain order.Riazi J. Karachi Math. Assoc. 7 (1985), 1-5. MR 0890069
Reference: [14] WANG R. J.-XU M. Y.: A classification of symmetric graphs of order 3p.J. Combin. Theory Ser. B 58 (1993), 197-216. Zbl 0793.05074, MR 1223693
Reference: [15] WIELANDT H.: Zur Theorie der Einfach Transitiven Permutationsgruppen.Math. Z. 40 (1935), 582-587. Zbl 0012.34303, MR 1545582
Reference: [16] WIELANDT H.: Zur Theorie der Einfach Transitiven Permutationsgruppen II.Math. Z. 52 (1947), 384-393. MR 0033817
Reference: [17] WIELANDT H.: Finite Permutation Groups.Academic Press, New York, 1964. Zbl 0138.02501, MR 0183775
.

Files

Files Size Format View
MathSlov_51-2001-1_6.pdf 668.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo