Previous |  Up |  Next

Article

Title: Representations of palindromically presented groups onto finite subgroups of $\text {SO}\sb 3 (\Bbb R)$ (English)
Author: Heusener, Michael
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 45
Issue: 2
Year: 1995
Pages: 193-212
.
Category: math
.
MSC: 57M05
MSC: 57M25
idZBL: Zbl 0852.57004
idMR: MR1357074
.
Date available: 2009-09-25T11:06:17Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129313
.
Reference: [1] BURDE G.: Das Alexanderpolynom der Knoten mit zwei Brücken.Arch. Math. (Basel) 44 (1985), 180-189. Zbl 0566.57004, MR 0780266
Reference: [2] BURDE G.: SU(2)-representation spaces for two-bridge knot groups.Math. Ann. 288 (1990), 103-119. MR 1070927
Reference: [3] BURDE G., ZIESCHANG H.: Knots.Walter de Gruyter, Berlin-New York, 1985. Zbl 0568.57001, MR 0808776
Reference: [4] du VAL P.: Homographies, Quaternions and Rotations.Math. Monographs, Oxford University Press, 1969.
Reference: [5] HARTLEY R.: Metabelian representations of knot groups.Pacific J. Math. 82 (1979), 93-104. Zbl 0404.20032, MR 0549835
Reference: [6] HARTLEY R.: Lifting group homomorphisms.Pacific J. Math. 105 (1983), 311-320. Zbl 0513.57001, MR 0691607
Reference: [7] KLASSEN E. P.: Representations of knot groups in SU(2).Trans. Amer. Math. Soc. 326 (1991), 795-828. Zbl 0743.57003, MR 1008696
Reference: [8] MONTESINOS J. M.: Classicial Tessellations and Three-manifolds.Springer, New York-Berlin-Heidelberg, 1987. MR 0915761
Reference: [9] MURASUGI K.: On periodic knots.Comment. Math. Helv. 46 (1971), 162-174. Zbl 0206.25603, MR 0292060
Reference: [10] RILEY R.: Homomorphisms of knot groups on finite groups.Math. Comp. 25 (1971), 603-619. Zbl 0224.55003, MR 0295332
Reference: [11] SCHUBERT H.: Knoten mit zwei Brücken.Math. Z. 65 (1956), 133-170. Zbl 0071.39002, MR 0082104
.

Files

Files Size Format View
MathSlov_45-1995-2_9.pdf 1.220Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo