Title:
|
Nearly-idempotent plain algebras are indeed nearly idempotent plain algebras (English) |
Author:
|
Szendrei, Ágnes |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
1996 |
Pages:
|
391-403 |
. |
Category:
|
math |
. |
MSC:
|
08A05 |
MSC:
|
08A40 |
idZBL:
|
Zbl 0889.08006 |
idMR:
|
MR1472633 |
. |
Date available:
|
2009-09-25T11:17:43Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/129412 |
. |
Reference:
|
[1] CLARK D. M.-KRAUSS P. H.: Plain para primal algebras.Algebra Universalis 11 (1980), 365-388. Zbl 0455.08005, MR 0602022 |
Reference:
|
[2] FREESE R.-McKENZIE R.: Commutator Theory for Congruence Modular Varieties.LMS Lecture Notes vol. 125, Cambridge University Press, Cambridge-New York, 1987. Zbl 0636.08001, MR 0909290 |
Reference:
|
[3] KEARNES K. A.: Every nearly idempotent plain algebra generates a minimal variety.Algebra Universalis 34 (1995), 322-325. Zbl 0834.08002, MR 1348955 |
Reference:
|
[4] KEARNES K. A.-SZENDREI Á.: Projectivity and isomorphism of strictly simple algebras.Preprint, 1996. |
Reference:
|
[5] McKENZIE R.: On minimal, locally finite varieties with permuting congruence relations.Preprint, 1976. |
Reference:
|
[6] McKENZIE R.: An algebraic version of categorical equivalence for varieties and more general algebraic categories.In: Logic and Algebra. Proceedings of the Magari Conference, Pontignano, Italy, April 1994, pp. 211-243; Lecture Notes in Pure and Appl. Math. 180, M. Dekker, New Yоrk, 1996. MR 1404941 |
Reference:
|
[7] POST E. L.: The Two-Valued Iterative Systems of Mathematical Logic.Ann. of Math. Stud. 5, Princeton Univ. Press, Princeton, 1941. Zbl 0063.06326, MR 0004195 |
Reference:
|
[8] SZENDREI Á.: Clones in Universal Algebra.Sém. Math. Sup. 99 (1986). Zbl 0603.08004, MR 0859550 |
Reference:
|
[9] SZENDREI Á.: Idempotent algebras with restrictions on subalgebras.Acta Sci. Math. (Szeged) 51 (1987), 251-268. Zbl 0633.08002, MR 0911575 |
Reference:
|
[10] SZENDREI Á.: Every idempotent plain algebra generates a minimal variety.Algebra Universal s 25 (1988), 36-39. Zbl 0618.08002, MR 0935000 |
Reference:
|
[11] SZENDREI Á.: Term minimal algebras.Algebra Universalis 32 (1994), 439-477. Zbl 0812.08001, MR 1300482 |
Reference:
|
[12] SZENDREI A.: Expansions of minimal varieties.Acta Sci. Math. (Szeged) 60 (1995), 659-679. Zbl 0833.08005, MR 1348937 |
Reference:
|
[13] TAYLOR W.: The fine spectrum of a variety.Algebra Universalis 5 (1975), 263-303. Zbl 0336.08004, MR 0389716 |
. |