Previous |  Up |  Next

Article

Title: On the Lebesgue decomposition of a function relative to a $p$-ideal of an orthomodular lattice (English)
Author: D'Andrea, Anna Bruna
Author: de Lucia, Paolo
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 41
Issue: 4
Year: 1991
Pages: 423-430
.
Category: math
.
MSC: 06C15
MSC: 81P10
idZBL: Zbl 0759.06009
idMR: MR1149048
.
Date available: 2009-09-25T10:34:13Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129470
.
Reference: [1] BERAN L. : Orthomodular Lattices.Algebraic Approach. Academia Praha and D. Reidel Publishing Company, Dordrecht, 1984. MR 0785005
Reference: [2] BLYTH T. S., JANOWITZ M. F.: Residuation Theory.Pergamon Press, Oxford, 1972. Zbl 0301.06001, MR 0396359
Reference: [3] CAPEK P.: Théoremes de décomposition en théorie de la mesure.C. R. Acad. Sc. Paris 285 A (1977), 537-539. Zbl 0364.28002, MR 0470169
Reference: [4] CAPEK P.: Decomposition theorems in Measure Theory.Math. Slovaca 31 (1981), 53 69. Zbl 0452.28002, MR 0619507
Reference: [5] d'ANDREA A. B., de LUCIA P., MORALES P.: The Lebesgue Decomposition Theorem and the Nikodym Convergence Theorem on an orthomodular poset.Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 137-158. Zbl 0747.28004, MR 1111759
Reference: [6] DUNFORD N., SCHWARTZ J. T.: Linear Operators.Part I. J. Wiley and Sons, New York, 1988. Zbl 0635.47003, MR 1009162
Reference: [7] FICKER V.: An abstract formulation of the Lebesgue decomposition theorem.J. Austral. Math. Soc. 12 (1971), 101-105. Zbl 0203.35901, MR 0274692
Reference: [8] GREECHIE R. J.: Orthomodular lattices admitting no states.J. Combin. Theory. 10 (1971), 119-132. Zbl 0219.06007, MR 0274355
Reference: [9] GUDDER S., ZERBE J.: Generalized monotone convergence and Radon-Nikodym theorems.J. Math. Phys. 22 (1981), 2553-2561. Zbl 0467.60003, MR 0640666
Reference: [10] HOLLAND S. S. Jr: An orthocomplete orthomodular lattice is complete.Proc. Amer. Math. Soc. 24 (1970), 717-718. MR 0256949
Reference: [11] KALMBACH G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496
Reference: [12] PALKO V.: On the Lebesgue decomposition of Gleason measures.Časopis Pěst. Mat 112 (1987), 1-5. Zbl 0621.46058, MR 0880929
Reference: [13] PALKO V.: A measure decomposition theorem.Math. Slovaca 38 (1988), 167-169. Zbl 0635.28003, MR 0945370
Reference: [14] RÜTTIMANN G. T.: Non Commutative Measure Theory.Habilitationsschrift, Universität Bern, 1980.
Reference: [15] RÜTTIMANN G. T.: Decomposition of cones of measures.Atti Sem. Mat. Fis. Univ. Modena XXXVIII (1990), 109-121. Zbl 0739.46012, MR 1076452
Reference: [16] RÜTTIMANN G. T., SCHINDLER C.: The Lebesgue decomposition of measures on orthomodular posets.Quart. J. Math. Oxford 37 (1986), 321-345. Zbl 0617.46065, MR 0854631
Reference: [17] SCHINDLER C.: Decomposition of Measures on Orthologics.Doctorat Dissertation, Universität Bern, 1986.
Reference: [18] SCHINDLER C.: The Lebesgue decomposition of measures on finite orthomodular posets.In: Proc. of First Winter School on Measure Theory, Liptovský Ján, eds. A. Dvurečenskij- S. Pulmannová. 1988, pp. 146-151. Zbl 0681.28003, MR 1000207
Reference: [19] TARANTINO C.: Decomposition theorems for finitely additive functions.Ricerche di Mat. 37 (1988), 137-148. MR 1021961
.

Files

Files Size Format View
MathSlov_41-1991-4_7.pdf 542.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo