Previous |  Up |  Next

Article

Title: On invariants related to non-unique factorizations in block monoids and rings of algebraic integers (English)
Author: Schmid, Wolfgang A.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 55
Issue: 1
Year: 2005
Pages: 21-37
.
Category: math
.
MSC: 11N64
MSC: 11R27
MSC: 20D60
MSC: 20K01
idZBL: Zbl 1108.11074
idMR: MR2178533
.
Date available: 2009-09-25T14:24:13Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129672
.
Reference: [1] CHAPMAN S. T.-FREEZE M.-GAO W. D.-SMITH W. W.: On Davenport's constant of finite abelian groups.Far East J. Math. Sci. (FJMS) 5 (2002), 47-54. Zbl 1149.11301, MR 1903437
Reference: [2] : Arithmetical Properties of Commutative Rings and Monoids.(S. T. Chapman, ed.), Lecture Notes in Pure and Appl. Math. 241, Dekker/CRC Press, New York, 2005. Zbl 1061.13001, MR 2140683
Reference: [3] GAO W. D.: On Davenport's constant of finite abelian groups with rank three.Discrete Math. 222 (2000), 111-124. Zbl 0971.20032, MR 1771393
Reference: [4] GAO W. D.: On a combinatorial problem connected with factorizations.Colloq. Math. 72 (1997), 251-268. Zbl 0867.11075, MR 1426700
Reference: [5] GEROLDINGER A.: Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern.Math. Z. 205 (1990), 159-162. Zbl 0721.11041, MR 1069491
Reference: [6] GEROLDINGER A.-HALTER-KOCH F.: Nonunique factorizations in block semigroups and arithmetical applications.Math. Slovaca 42 (1992), 641-661. MR 1202179
Reference: [7] GEROLDINGER A.-HALTER-KOCH F.: Congruence monoids.Acta Arith. 112 (2004), 263-296. Zbl 1057.13003, MR 2046184
Reference: [8] GEROLDINGER A.-HALTER-KOCH F.: Transfer principles in the theory of non-unique factorization.In: Arithmetical Properties of Commutative Rings and Monoids (S. T. Chapman, ed.), Lecture Notes in Pure and Appl. Math. 241, Dekker/CRC Press, New York, 2005, pp. 114-142. MR 2140689
Reference: [9] GEROLDINGER A.-HALTER-KOCH F.-KACZOROWSKI J.: Non-unique factorizations in orders of global fields.J. Reine Angew. Math. 459 (1995), 89-118. Zbl 0812.11061, MR 1319518
Reference: [10] GEROLDINGER A.-KACZOROWSKI J.: Analytic and arithmetic theory of semigroups with divisor theory.Sem. Theor. Nombres Bordeaux (2) 4 (1992), 199-238. Zbl 0780.11046, MR 1208863
Reference: [11] GEROLDINGER A.-SCHNEIDER R.: On Davenport's constant.J. Combin. Theory Ser. A 61 (1992), 147-152. Zbl 0759.20008, MR 1178393
Reference: [12] HALTER-KOCH F.: Chebotarev formations and quantitative aspects of nonunique factorizations.Acta Arith. 62 (1992), 173-206. MR 1183988
Reference: [13] HALTER-KOCH F.: Factorization problems in class number two.Colloq. Math. 65 (1993), 255-265. Zbl 0816.11053, MR 1240171
Reference: [14] HALTER-KOCH F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory.Pure and Applied Mathematics, Marcel Dekker 211, Marcel Dekker Inc., New York, 1998. Zbl 0953.13001, MR 1828371
Reference: [15] KACZOROWSKI J.: Some remarks on factorization in algebraic number fields.Acta Arith. 43 (1983), 53-68. Zbl 0526.12006, MR 0730848
Reference: [16] KACZOROWSKI J.-PERELLI A.: Functional independence of the singularities of a class of Dirichlet series.Amer. J. Math. 120 (1998), 289-303. Zbl 0905.11036, MR 1613634
Reference: [17] KACZOROWSKI J.-PINTZ J.: Oscillatory properties of arithmetical functions II.Acta Math. Hungar. 49 (1987), 441-453. Zbl 0631.10026, MR 0891057
Reference: [18] NARKIEWICZ W.: Finite abelian groups and factorization problems.Colloq. Math. 42 (1979), 319-330. Zbl 0514.12004, MR 0567570
Reference: [19] NARKIEWICZ W.-ŚLIWA J.: Finite abelian groups and factorization problems II.Colloq. Math. 46 (1982), 115-122. Zbl 1164.20358, MR 0672371
Reference: [20] NARKIEWICZ W.: Elementary and Analytic Theory of Algebraic Numbers.(3rd ed.), Springer-Verlag, Berlin, 2004. Zbl 1159.11039, MR 2078267
Reference: [21] NATHANSON M. B.: Additive Number Theory.Grad. Texts in Math. 165, Springer-Verlag, New York, 1996. Zbl 0859.11003, MR 1395371
Reference: [22] OLSON J. E.: A combinatorial problem on finite Abelian groups I.J. Number Theory 1 (1969), 8-10. Zbl 0169.02003, MR 0237641
Reference: [23] OLSON J. E.: A combinatorial problem on finite Abelian groups II.J. Number Theory 1 (1969), 195-199. Zbl 0167.28004, MR 0240200
Reference: [24] RADZIEJEWSKI M.: On the distribution of algebraic numbers with prescribed factorization properties.Acta Arith. 116 (2005), 153-171. Zbl 1136.11064, MR 2110393
Reference: [25] RADZIEJEWSKI M.: Oscillations of error terms associated with certain arithmetical functions.Monatsh. Math. (2005) (To appear). Zbl 1099.11056, MR 2123959
Reference: [26] RADZIEJEWSKI M.-SCHMID W. A.: On the asymptotic behavior of some counting functions.Colloq. Math. (To appear). Zbl 1143.11346, MR 2152660
Reference: [27] SCHMID W. A.: Arithmetic of block monoids.Math. Slovaca 54 (2004), 503-526. Zbl 1108.11084, MR 2114621
Reference: [28] SCHMID W. A.: On the asymptotic behavior of some counting functions II.Colloq. Math. (To appear). Zbl 1143.11351, MR 2152661
Reference: [29] VAN EMDE BOAS P.-KRUYSWIJK D.: A combinatorial problem on finite abelian groups III.Technical report, Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 1969-008. Zbl 0245.20046, MR 0255672
.

Files

Files Size Format View
MathSlov_55-2005-1_3.pdf 1.027Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo