Previous |  Up |  Next

Article

Title: Sufficient families and entropy of inverse limit (English)
Author: Khare, Mona
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 49
Issue: 4
Year: 1999
Pages: 443-452
.
Category: math
.
MSC: 37A35
MSC: 37A50
idZBL: Zbl 0956.37005
idMR: MR1719743
.
Date available: 2009-09-25T11:40:07Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130503
.
Reference: [1] BROWN J. R.: Ergodic Theory and Topological Dynamics.Academic Press, Inc., London, 1976. Zbl 0334.28011, MR 0492177
Reference: [2] BUTNARIU D.: Additive fuzzy measures and integrals.J. Math. Anal. Appl. 93 (1983), 436-452. Zbl 0516.28006, MR 0700157
Reference: [3] DUGUNDJI J.: Topology.Prentice Hall of India Pvt. Ltd., New Delhi, 1975.
Reference: [4] DUMITRESCU D.: Fuzzy measures and the entropy of fuzzy partitions.J. Math. Anal. Appl. 176 (1993), 359-373. Zbl 0782.28012, MR 1224152
Reference: [5] HALMOS P. R.: Measure Theory.Van Nostrand Reinhold, Princeton, NJ, 1950. Zbl 0040.16802, MR 0033869
Reference: [6] KATOK A.-HASSELBLATT B.: Introduction to the Modern Theory of Dynamical Systems.Cambridge University Press, Cambridge, 1995. Zbl 0878.58020, MR 1326374
Reference: [7] KHARE M.: Fuzzy σ-algebras and conditional entropy.Fuzzy Sets and Systems 102 (1999), 287-292. MR 1674971
Reference: [8] KLEMENT E. P.: Fuzzy σ-algebras and fuzzy measurable functions.Fuzzy Sets and Systems 4 (1980), 83-93. MR 0580836
Reference: [9] MALIČKÝ P.-RIECAN B.: On the entropy of dynamical systems.In: Proc. Conf. Ergodic Theory and Related Topics II (Georgenthal 1986), Teubner, Leipzig, 1987, pp.135-138. MR 0931138
Reference: [10] MARKECHOVÁ D.: The entropy of fuzzy dynamical systems and generators.Fuzzy Sets and Systems 48 (1992), 351-363. Zbl 0754.60005, MR 1178175
Reference: [11] MARKECHOVÁ D.: Entropy of complete fuzzy partitions.Math. Slovaca 43 (1993), 1-10. Zbl 0772.94002, MR 1216263
Reference: [12] MESIAR R.: The Bayes principle and the entropy on fuzzy probability spaces.Internat. J. Gen. Systems 20 (1991), 67-72. Zbl 0737.60004
Reference: [13] PIASECKI K.: Probability of fuzzy events defined as denumerable additive measure.Fuzzy Sets and Systems 17 (1985), 271-284. MR 0819364
Reference: [14] RIEČAN B.: A new approach to some notions of statistical quantum mechanics.Busefal 35 (1988), 4-6.
Reference: [15] RIEČAN B.-DVURECENSKIJ A.: On randomness and fuzziness.In: Progress in Fuzzy Sets in Europe, 1986, Polska Akademia Nauk, Warszawa, 1988, pp. 321-326.
Reference: [16] RIEČAN B.-NEUBRUNN T.: Integral, Measure and Ordering.Kluwer Acad. Publ.; Ister Press, Dordrecht; Bratislava, 1997. Zbl 0916.28001, MR 1489521
Reference: [17] SRIVASTAVA P.-KHARE M.: Conditional entropy and Rokhlin metric.Math. Slovaca (1999), 433-441. Zbl 0949.28015, MR 1719747
Reference: [18] SRIVASTAVA P.-KHARE M.-SRIVASTAVA Y.K.: A fuzzy measure algebra as a metric space.Fuzzy Sets and Systems 79 (1996), 395-400. Zbl 0872.28012, MR 1388411
Reference: [19] SRIVASTAVA P.-KHARE M.-SRIVASTAVA Y. K.: m-equivalence, entropy and F-dynamical systems.Fuzzy Sets and Systems (To appear). Zbl 0982.37006
Reference: [20] SRIVASTAVA P.-KHARE M.-SRIVASTAVA Y. K.: Fuzzy dynamical systems - inverse and direct spectra.Fuzzy Sets and Systems (To appear). Zbl 0974.37011, MR 1769845
Reference: [21] SRIVASTAVA Y. K.: Fuzzy Probability Measures and Dynamical Systems.D. Phil. Thesis, Allahabad University, 1993.
.

Files

Files Size Format View
MathSlov_49-1999-4_6.pdf 605.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo