Previous |  Up |  Next


Title: A simplified formula for calculation of metric dimension of converging sequences (English)
Author: Žáčik, Tibor
Author: Mišík, Ladislav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 55
Issue: 3
Year: 2005
Pages: 363-372
Category: math
MSC: 40A05
MSC: 54F50
idZBL: Zbl 1109.54024
idMR: MR2181012
Date available: 2009-09-25T14:26:53Z
Last updated: 2012-08-01
Stable URL:
Reference: [BT] BESICOVITCH A. S.-TAYLOR S. J. : On the complementary intervals of a linear closed sets of zero Lebesgue measure.J. London Math. Soc. 29 (1954), 449-459. MR 0064849
Reference: [H] HAWKES J.: Hausdorff measure, entropy and the independents of small sets.Proc. London Math. Soc. (3) 28 (1974), 700-724. MR 0352412
Reference: [KA] KOCAK S.-AZCAN H.: Fractal dimensions of some sequences of real numbers.Doga Mat. 17 (1993), 298-304. Zbl 0857.40002, MR 1255026
Reference: [KT] KOLMOGOROV A. N.-TIKHOMIROV V. M.: $\epsilon$-entropy and $\epsilon$ -capacity of sets in functional spaces.Uspekhi Mat. Nauk 14 (1959), 3 86 (Russian); In: Amer. Math. Soc. Transl. Ser. 2 Vol. 17, Amer. Math. Soc, Providence, RI, 1961, pp. 277-364. MR 0112032
Reference: [MZ1] MIŠÍK L.-ŽÁČIK T.: On some properties of the metric dimension.Comment. Math. Univ. Carolin. 31 (1990), 781-791. Zbl 0717.54017, MR 1091376
Reference: [MZ2] MIŠÍK L.-ŽÁČIK T.: A formula for calculation of metric dimension of converging sequences.Comment. Math. Univ. Carolin. 40 (1999), 393-401. Zbl 0976.54035, MR 1732660
Reference: [PS] PONTRYAGIN L. S.-SNIRELMAN L. G.: Sur une propriete metrique de la dimension.Ann. of Math. (2) 33 (1932), 156-162 (Appendix to the Russian translation of Dimension Theory by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit., Moscow, 1948). Zbl 0003.33101, MR 1503042


Files Size Format View
MathSlov_55-2005-3_10.pdf 842.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo