Title:
|
Gröbner bases and the immersion of real flag manifolds in Euclidean space (English) |
Author:
|
Mendes, Mirian Percia |
Author:
|
Conde, Antonio |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
51 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
107-123 |
. |
Category:
|
math |
. |
MSC:
|
57R20 |
MSC:
|
57R42 |
idZBL:
|
Zbl 0986.57024 |
idMR:
|
MR1817727 |
. |
Date available:
|
2009-09-25T11:49:41Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/131260 |
. |
Reference:
|
[1] ADAMS W. W.-LOUSTAUNAU P.: An Introduction to Gröbner Bases.Grad. Stud. Math. 3, Amer. Math. Soc, Providence, RI, 1994. Zbl 0803.13015, MR 1287608 |
Reference:
|
[2] BARTÍK V.-KORBAŠ J.: Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds.Rend. Circ Mat. Palermo (2) Suppl. 6 (1984), 19-29. Zbl 0566.57012, MR 0782702 |
Reference:
|
[3] BOREL A.: La cohomologie mod 2 de certains espaces homogènes.Comment. Math. Helv. 27 (1953), 165-97. Zbl 0052.40301, MR 0057541 |
Reference:
|
[4] BOREL A.: Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compact.Ann. of Math. (2) 57 (1953), 11-207. MR 0051508 |
Reference:
|
[5] BOREL A.-HIRZEBRUCH F.: Characteristic classes and homogeneous spaces I.Amer. J. Math. 80 (1958), 458-535. MR 0102800 |
Reference:
|
[6] CONDE A.: B-Genus and Non-Embeddings.PhD Thesis, University of Chicago. Chicago, 1971. MR 2611666 |
Reference:
|
[7] CONDE A.: Sobre as classes de Atiyah-Hirzebruch, de Thom, o problema do mergulho e variedades flâmulas.Tese (Livre-Docência)-Instituto de Ciências Matemáticas, Universidade de São Paulo, São Carlos, 1979. |
Reference:
|
[8] COX D.-LITTLE J.-O'SHEA D.: Ideals, Varгeties and Algorithms.Undergrad. Texts Math., Springer, New York, 1992. |
Reference:
|
[9] GITLER S.: Immersion and embedding of manifolds.In: Algebraic Topology. Proc Sympos. Pure Math. 22, Amer. Math. Soc, Providence, RI, 1971, pp. 87-96. Zbl 0251.57011, MR 0315726 |
Reference:
|
[10] HILLER H.: Immersing homogeneous spaces in Euclidean space.Publ., Secc. Mat., Univ. Auton. Bare 26 (1982), 43-45. Zbl 0545.57008, MR 0763333 |
Reference:
|
[11] HILLER H.-STONG R. E.: Immersion dimension for real grassmannians.Math. Ann. 255 (1981), 361-367. Zbl 0439.51014, MR 0615856 |
Reference:
|
[12] HIRSCH M. W.: Immersions of manifolds.Trans. Amer. Math. Soc. 93 (1959), 242-276. Zbl 0113.17202, MR 0119214 |
Reference:
|
[13] HUSEMOLLER D.: Fibre Bundles.Mc Graw-Hill, New York, 1966. Zbl 0144.44804, MR 0229247 |
Reference:
|
[14] KORBAŠ J.: Vector fields on real flag manifolds.Ann. Global Anal. Geom. 3 (1985), 173 84. Zbl 0579.57017, MR 0809636 |
Reference:
|
[15] KORBAS J.: Note on Stiefel-Whitney classes of flag manifolds.Rend. Circ. Mat. Palermo (2) Suppl. 16 (1987), 109-111. Zbl 0661.57007, MR 0946716 |
Reference:
|
[16] LAM K. Y.: A formula for the tangent bundle of flag manifolds and related manifolds.Trans. Amer. Math. Soc. 213 (1975), 305-314. Zbl 0312.55020, MR 0431194 |
Reference:
|
[17] LANG S.: Linear Algebra.(3rd ed.), Springer, New York, 1987. Zbl 0618.15001, MR 0874113 |
Reference:
|
[18] MENDES M. P.: An algebraic problem and the software Maple.(In preparation). Zbl 1027.13015 |
Reference:
|
[19] MILNOR J. W.-STASHEFF J. D.: Characteristic Classes.Ann. of Math. Stud. 76, Princeton Univ. Press-Univ. of Tokyo Press, Princeton, NJ, 1974. Zbl 0298.57008, MR 0440554 |
Reference:
|
[20] SANKARAN P.-ZVENGROWSKI P.: On stable parallelizability of flag manifolds.Pacific J. Math. 122 (1986), 455-458. Zbl 0557.14030, MR 0831125 |
Reference:
|
[21] STEENROD N.: The Topology of Fibre Bundles.Princeton Math. Ser. 14, Princeton Univ. Press, Princeton, NJ, 1951. Zbl 0054.07103, MR 0039258 |
Reference:
|
[22] STONG R. E.: Immersions of real flag manifolds.Proc Amer. Math. Soc 88 (1983), 708-710. Zbl 0532.57020, MR 0702304 |
Reference:
|
[23] WHITEHEAD G. W.: Elements ofmhomotopy theory.Grad. Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978. MR 0516508 |
Reference:
|
[24] ZVENGROWSKI P.: Recent work in the parallelizability of flag manifolds.In: Contemp. Math. 58, Amer. Math. Soc, Providence, RI. 1987, pp. 129-137. MR 0893852 |
. |