Previous |  Up |  Next

Article

Title: A blow-up result for nonlinear diffusion equations (English)
Author: Fila, Marek
Author: Filo, Ján
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 39
Issue: 3
Year: 1989
Pages: 331-346
.
Category: math
.
MSC: 35B40
MSC: 35K57
idZBL: Zbl 0704.35071
idMR: MR1016350
.
Date available: 2009-09-25T10:19:26Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132074
.
Reference: [1] ARONSON D. G., CRANDALL M. G., PELETIER L. A.: Stabilization of solutions of a degenerate nonlinear diffusion problem.Nonlinear Analysis, 6, 1982, 1001-1022. Zbl 0518.35050, MR 0678053
Reference: [2] BALL J. M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations.Quart. J. Math. Oxford, (2), 28, 1977, 473-486. Zbl 0377.35037, MR 0473484
Reference: [3] BERGER M. S.: Nonlinearity and functional analysis.Academic Press 1977. Zbl 0368.47001, MR 0488101
Reference: [4] FILA M., FILO J.: Stabilization of solutions of certain one-dimensional degentrate diffusion equations.Math. Slovaca 37, 1987, 217-229. MR 0899439
Reference: [5] FILO J.: On solutions of a pertuгbed fast diffusion equation.Aplikace matematiky 32, 1987, 364-380. MR 0909544
Reference: [6] FRIEDMAN A.: Partial differential equations of parabolic type.Prentice-Hall, N.J. 1964. Zbl 0144.34903, MR 0181836
Reference: [7] FRIEDMAN A.: Partial differential equations.Holt, Rinehart and Winston, New York 1969. Zbl 0224.35002, MR 0445088
Reference: [8] FUJITA H.: On the blowing up of solutions of the Cauchy problem for $u_t = \bigtriangleup u + u^{1+a}.$.J. Fac. Sci. Univ. Tokyo, Sect. 1A 13, 1966, 109-124. MR 0214914
Reference: [9] GALAKTIONOV V. A.: A boundary value problem for the nonlinear parabolic equation $u_t = ∆u^{1+\alpha} + u^\beta$.Differential equations 17, 1981, 551-555 (Russian). MR 0616920
Reference: [10] LADYZENSKAJA O. A., SOLONNIKOV V. A., URALCEVA N. N.: Lineaг and quasilinear equations of paгabolic type.Nauka, Moscow 1967.
Reference: [11] LEVINE H. A., SACKS P. E.: Some existence and nonexistence theorems for solutions of degenerate parabolic equations.J. Differential Equations 52, 1984, 135-161. Zbl 0487.34003, MR 0741265
Reference: [12] NAKAO M.: Existence, nonexistence and some asymptotic behaviour of global solutions of a nonlinear degenerate parabolic equation.Math. Rep. College of Gen. Edc, Kyushu Univ. 14, 1983, 1-21. Zbl 0563.35038, MR 0737351
Reference: [13] NAKAO M.: Lp-estimates of solution of some nonlinear degenerate diffusion equations.J. Math. Soc. Japan 37, 1985, 41-63. MR 0769776
Reference: [14] SACKS P. E.: Continuity of solutions of a singular parabolic equation.Nonlinear Analysis 7, 1983, 387-409. Zbl 0511.35052, MR 0696738
Reference: [15] SATTINGER D. H., PAYNE L. E.: Saddle points and instability of nonlinear hyperbolic equations.Israel J. Math. 22, 1975, 273-303. MR 0402291
Reference: [16] TSUTSUMI M.: Existence and nonexistence of global solutions for nonlinear parabolic equations.Publ. R.I.M.S., Kyoto Univ. 8, 1972/73, 211-229. Zbl 0248.35074, MR 0312079
.

Files

Files Size Format View
MathSlov_39-1989-3_13.pdf 1.239Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo