Title:
|
Radicals in non-commutative generalizations of MV-algebras (English) |
Author:
|
Rachůnek, Jiří |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
135-144 |
. |
Category:
|
math |
. |
MSC:
|
06D35 |
MSC:
|
06F15 |
idZBL:
|
Zbl 1008.06011 |
idMR:
|
MR1935113 |
. |
Date available:
|
2009-09-25T14:06:45Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/132142 |
. |
Reference:
|
[1] ABRUSCI V. M., RUET P.: Non-commutative logic I: the multiplicative fragment.Ann. Pure Appl. Logic 101 (2000), 29-64. Zbl 0962.03054, MR 1729743 |
Reference:
|
[2] ANDERSON M., FEIL T.: Lattice-Ordered Groups.D. Reidel Publ., Dordrecht, 1988. Zbl 0636.06008, MR 0937703 |
Reference:
|
[3] BAUDOT R.: Non-commutative logic programming language NoCLog.In: Symposium LICS 2000 (Santa Barbara). Short Presentations. |
Reference:
|
[4] BIGARD A., KEIMEL K., WOLFENSTEIN S.: Groupes et Anneaux Réticulés.Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653 |
Reference:
|
[5] CETERCHI R.: On algebras with implications, categorically equivalent to pseudo-MV algebras.In: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharest, 1999, pp. 912-917. Zbl 0984.06008, MR 1730094 |
Reference:
|
[6] CETERCHI R.: Pseudo-Wajsberg algebras.Multiple-Valued Logic 6 (2001), 67-88. Zbl 1013.03074, MR 1817437 |
Reference:
|
[7] CETERCHI R.: The lattice structure of pseudo-Wajsberg algebras.J. UCS 6 (2000), 22-38. Zbl 0963.06012, MR 1817730 |
Reference:
|
[8] CHANG C. C.: Algebraic analysis of many valued logic.Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302 |
Reference:
|
[9] CHANG C. C.: A new proof of the completeness of the Lukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74-80. Zbl 0093.01104, MR 0122718 |
Reference:
|
[10] CIGNOLI R. O. L., D'OTTAVIANO I. M. L., MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning.Kluwеr Acad. Publ., Dordrecht-Boston-London, 2000. Zbl 0937.06009, MR 1786097 |
Reference:
|
[11] CIGNOLI R., TORRENS A.: The poset of prime $\ell$-ideals of an abelian $\ell$-group with a strong unit.J. Algebra 184 (1996), 604-614. MR 1409232 |
Reference:
|
[12] DI NOLA A., GEORGESCU G., SESSA S.: Closed ideals of MV-algebras.In: Advances in Contemporary Logic and Computer Sciеncе. Contеmp. Math. 235, Amеr. Math. Soc, Providеncе, RI, 1999, pp. 99-112. Zbl 0937.06010, MR 1721208 |
Reference:
|
[13] DVUREČENSKIJ A.: Pseudo $MV$-algebras are intervals in $\ell$-groups.J. Austral. Math. Soc 72 (2002) (To appеar). Zbl 1027.06014 |
Reference:
|
[14] DVUREČENSKIJ A.: States on pseudo MV-algebras.Studia Logica 68 (2001), 301-327. Zbl 1081.06010, MR 1865858 |
Reference:
|
[15] DVUREČENSKIJ A., PULMANNOVÁ S.: Nеw Trends in Quantum Structures.Kluwеr Acad. Publ., Dordrеcht-Boston-London, 2000. |
Reference:
|
[16] GEORGESCU G., IORGULESCU A.: Pseudo-MV algebras: A non-commutative extension of MV-algebras.In: Proc Fourth Intеr. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharеst, 1999, pp. 961-968. |
Reference:
|
[17] GEORGESCU G., IORGULESCU A.: Pseudo-MV algebras.Multiplе-Valued Logic 6 (2001), 95-135. Zbl 1014.06008, MR 1817439 |
Reference:
|
[18] GLASS A. M. W.: Partially Ordered Groups.World Sciеntific, Singaporе-New Jеrsey-London-Hong Kong, 1999. Zbl 0933.06010, MR 1791008 |
Reference:
|
[19] GOODEARL K. R.: Partially Ordered Abelian Groups with Interpolation.Math. Survеys Monographs 20, Amer. Math. Soc., Providеncе, RI, 1986. Zbl 0589.06008, MR 0845783 |
Reference:
|
[20] HÁJEK P.: Metamathematics of Fuzzy Logic.Kluwеr, Amstеrdam, 1998. Zbl 0937.03030 |
Reference:
|
[21] HORT D., RACHŮNEK J.: Lex ideals of generalized MV-algebras.In: Discrete Math. Theoret. Comput. Sci. (DTMCS01), Springer, London, 2001, pp. 125 -136. Zbl 0983.06015, MR 1934826 |
Reference:
|
[22] KOPYTOV V. M., MEDVEDEV N. YA.: The Theory of Lattice Ordered Groups.Kluwеr Acad. Publ., Dordrecht-Boston-London, 1994. Zbl 0834.06015, MR 1369091 |
Reference:
|
[23] LAMBEK J.: Some lattice models of bilinear logic.Algebra Universalis 34 (1995), 541-550. Zbl 0840.03044, MR 1357483 |
Reference:
|
[24] LAMBEK J.: Bilinear logic and Grishin algebras.In: Logic at Wгork. Essays Dedicated to the Memory of Helena Rasiowa (E. Orlowska, ed.), Physica-Verlag Comp., Heidelberg, 1999, pp. 604-612. Zbl 0957.03063, MR 1720819 |
Reference:
|
[25] MAIELI R., RUET P.: Non-commutative logic III: focusing proofs.Prеprint. Zbl 1072.03035 |
Reference:
|
[26] MUNDICI D.: Interpretation of AF C* -algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15-63. MR 0819173 |
Reference:
|
[27] RACHŮNEK J.: A non-commutative generalгzation of MV-algebras.Czechoslovak Math. J. (To appear). |
Reference:
|
[28] RАCHŮNEK J.: Prime ideals and polars in generalized MV-algebras.Multiple-Valued Logic (To appear). |
Reference:
|
[29] RАCHŮNEK J.: Prime spectra of non-commutative generalгzations of MV-algebras.(Submitted). |
Reference:
|
[30] RUET P.: Non-commutative logic II: sequent calculus and phrase semantics.Math. Structures Comput. Sci. 10 (2000), 277-312. MR 1770234 |
Reference:
|
[31] TURUNEN E.: Mathematics Behind Fuzzy Logic.Physica-Verlag, А Springеr-Vеrlag Comp., Hеidelbеrg-New York, 1999. Zbl 0940.03029, MR 1716958 |
Reference:
|
[32] YETTER D. N.: Quantales and (non-commutative) linear logic.J. Symbolic Logic 55 (1990), 41-64. MR 1043543 |
. |