Previous |  Up |  Next

Article

Title: BL-algebras and quantum structures (English)
Author: Vetterlein, Thomas
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 54
Issue: 2
Year: 2004
Pages: 127-141
.
Category: math
.
MSC: 03B52
MSC: 03G12
MSC: 81P10
idZBL: Zbl 1065.03049
idMR: MR2074210
.
Date available: 2009-09-25T14:19:10Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132209
.
Reference: [CiOtMu] CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. Zbl 0937.06009, MR 1786097
Reference: [DaGi] DALLA CHIARA M. L.-GIUNTINI R.: The logics of orthoalgebras.Studia Logica 55 (1995), 3-22. Zbl 0836.03035, MR 1348834
Reference: [DvGr] DVUREČENSKIJ A.-GRAZIANO M. G.: On representations of commutative BCK-algebras.Demonstratio Math. 23 (1999), 227-246. Zbl 0942.06009, MR 1710247
Reference: [DvPu] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl 0987.81005, MR 1861369
Reference: [DvVe] DVUREČENSKIJ A.-VETTERLEIN T.: Pseudoeffect algebras I. Basic properties.Internat. J. Theoret. Phys. 40 (2001), 685-701. Zbl 0994.81008, MR 1831592
Reference: [FoBe] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325-1346. Zbl 1213.06004, MR 1304942
Reference: [God] GÖDEL K.: Zum intuitionistischen Aussagenkalkul.Anzeiger Wien 69 (1932), 65-66.
Reference: [Got] GOTTWALD S.: A Treatise on Many-Valued Logics.Research Studies Press, Baldock, 2001. Zbl 1048.03002, MR 1856623
Reference: [GuPu] GUDDER S.-PULMANNOVÁ S.: Quotients of partial abelian monoids.Algebra Universalis 38 (1997), 395-421. Zbl 0933.03082, MR 1626347
Reference: [Haj1] HÁJEK P.: Metamathematics of Fuzzy Logic.Trends in Logic - Studia Logica Library 4, Kluwer Acad. Publ., Dordrecht, 1998. Zbl 0937.03030, MR 1900263
Reference: [Haj2] HÁJEK P.: Basic fuzzy logic and BL-algebras.Soft Comput. 2 (1998), 124-128.
Reference: [Hoh] HÖHLE U.: Commutative, residuated l-monoids.In: Non-classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory (U. Hohle et al., eds.), Kluwer Acad. Publ., Dordrecht, 1995, pp. 53-106. Zbl 0838.06012, MR 1345641
Reference: [lor] IORGULESCU A.: Iseki algebras. Connection with BL-algebras.Preprint. Zbl 1075.06009
Reference: [Ise] ISEKI K.: BCK-algebras with condition (S).Math. Japon. 24 (1979), 107-119. Zbl 0438.03059, MR 0539396
Reference: [KoCh] KOPKA F.-CHOVANEC F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269
Reference: [Kuh] KÜHR J.: Pseudo BL-algebras and DRl-monoids.Math. Bohem. 128 (2003), 199-208. MR 1995573
Reference: [MeJu] MENG J.-JUN Y. B.: BCK-Algebras.Kyung Moon Sa Co., Seoul, 1994. Zbl 0906.06015, MR 1297121
Reference: [Mun] MUNDICI D.: MV-algebras are categorically equivalent to bounded commutative BCK-algebras.Math. Japon. 31 (1986), 889-894. Zbl 0633.03066, MR 0870978
Reference: [Rav] RAVINDRAN K.: On a Structure Theory of Effect Algebras.Ph.D. Thesis, Kansas State University, Manhattan, 1996. MR 2694228
Reference: [Swa] SWAMY K. L. N.: Lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797
Reference: [Tur] TURUNEN E.: BL-algebras of basic fuzzy logic.Mathware Soft Comput. 6 (1999), 49-61. Zbl 0962.03020, MR 1724318
.

Files

Files Size Format View
MathSlov_54-2004-2_3.pdf 805.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo