Previous |  Up |  Next

Article

Title: On face-vectors and vertex-vectors of polyhedral maps on orientable $2$-manifolds (English)
Author: Jendroľ, Stanislav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 4
Year: 1993
Pages: 393-416
.
Category: math
.
MSC: 05C10
MSC: 52B70
idZBL: Zbl 0795.05049
idMR: MR1248974
.
Date available: 2009-09-25T10:50:03Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132351
.
Reference: [1] BARNETTE D.: On p-vectors of 3-polytopes.J. Combin. Theory Ser.? 7 (1969), 89-103. Zbl 0179.25902, MR 0244851
Reference: [2] BARNETTE D.: Polyhedral maps on 2-manifolds.In: Convexity and Related Combinatorial Geometry (D. C. Kay and M. Breen, eds.), Marcel Dekker Inc., New York and Basel, 1982, pp. 7-19. Zbl 0491.05027, MR 0650299
Reference: [3] EBERHARD V.: Zur Morphologie der Polyeder.Teubner, Leipzig, 1891.
Reference: [4] ENNS T. C.: Convex 4-valent polytopes.Discrete Math. 30 (1980), 227-234. Zbl 0441.52006, MR 0573637
Reference: [5] ENNS T. C.: 4-valent graphs.J. Graph Theory 6 (1982), 255-281. Zbl 0457.05058, MR 0666795
Reference: [6] FISHER J. C.: An existence theorem for simple convex polyhedra.Discrete Math. 7 (1974), 75-97. Zbl 0271.52008, MR 0333984
Reference: [7] GRITZMANN P.: The toroidal analogue to Eberhard's theorem.Mathematika 30 (1983), 274-290. Zbl 0519.57015, MR 0737179
Reference: [8] GRÜNBAUM B.: Convex Polytopes.Interscience, New York, 1967. MR 0226496
Reference: [9] GRÜNBAUM B.: Some analogues of Eberhard's theorem on convex polytopes.Israel J. Math. 6 (1968), 398-411. MR 0244854
Reference: [10] GRÜNBAUM B.: Planar maps with prescribed types of vertices and faces.Mathematika 16 (1969), 28-36. Zbl 0186.27502, MR 0245460
Reference: [11] GRÜNBAUM B.: Polytopal graphs.In: Studies in Graph Theory MAA Stud. Math. 12 (D. R. Fulkerson, ed.), Math. Assoc. America, Washington, DC, 1975, pp. 201-224. Zbl 0323.05104, MR 0406868
Reference: [12] GRÜNBAUM B., MOTZKIN T. S.: The number of hexagons and the simplicity of geodesies of certain polyhedra.Canad. J. Math. 15 (1963), 744-751. MR 0154182
Reference: [13] GRÜNBAUM B., SHEPHARD G. C.: The theorems of Euler and Eberhard for tilings of the plane.Resultate Math. 5 (1982), 19-44. Zbl 0505.52004, MR 0662793
Reference: [14] GRÜNBAUM B., ZAKS J.: The existence of certain planar maps.Discrete Math. 10 (1974), 93-115. Zbl 0298.05112, MR 0349455
Reference: [15] JENDROE S.: On the face-vector of trivalent convex polyhedra.Math. Slovaca 33 (1983), 165-180. MR 0699086
Reference: [16] JENDROE S.: On face vectors of trivalent maps.Math. Slovaca 36 (1986), 367-386. MR 0871777
Reference: 17] JENDROE S.: On face-vectors and vertex-vectors of convex polyhedra.Discrete Math. 118 (1993), 119-144. MR 1230057
Reference: [18] JENDROE S., JUCOVIČ E.: On a conjecture by B. Grünbaum.Discrete Math. 2 (1972), 35-49. MR 0302497
Reference: [19] JENDROE S., JUCOVIČ E.: Generalization of a theorem by V. Eberhard.Math. Slovaca 27 (1977), 383-407. MR 0536841
Reference: [20] JUCOVIČ E.: On the number of hexagons in a map.J. Combin. Theory Ser. B 10 (1971), 232-236. Zbl 0214.50902, MR 0278179
Reference: [21] JUCOVIČ E.: On face-vectors and vertex-vectors of cell-decompositions of orientable 2-manifolds.Math. Nachr. 73 (1976), 285-295. Zbl 0337.55003, MR 0432490
Reference: [22] JUCOVIČ E.: Convex 3-polytopes.(Slovak), Veda, Bratislava, 1981.
Reference: [23] KRAEFT J.: Über 3-realisierbare Folgen mit beliebigen Sechseckzahlen.J. Geom. 10 (1977), 32-44. Zbl 0357.52008, MR 0513982
Reference: [24] MALKEVITCH J.: Polytopal graphs.In: Selected Topics in Graph Theory 3, Academic Press, London, 1988, pp. 169-188. Zbl 0678.05015, MR 1205401
Reference: [25] TRENKLER M.: Convex 4-valent polytopes with prescribed types of faces.Comment. Math. Univ. Carolin. 25 (1984), 171-179. Zbl 0551.52005, MR 0749125
.

Files

Files Size Format View
MathSlov_43-1993-4_1.pdf 1.443Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo