Previous |  Up |  Next

Article

Title: $\Cal I$-convergence and extremal $\Cal I$-limit points (English)
Author: Kostyrko, Pavel
Author: Mačaj, M.
Author: Šalát, Tibor
Author: Sleziak, Martin
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 55
Issue: 4
Year: 2005
Pages: 443-464
.
Category: math
.
MSC: 40A05
idZBL: Zbl 1113.40001
idMR: MR2181783
.
Date available: 2009-09-25T14:27:57Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132906
.
Reference: [1] ALEXANDER R.: Density and multiplicative structure of sets of integers.Acta Arith. 12 (1967), 321-332. MR 0211979
Reference: [2] BACHRATÁ K.: The maximal ideals of $C(0,1)$.Práce a Štúdie V.Š. Dopravу a Spojov v Žiline, Sér. Mat.-Fуz. 8 (1992), 5-7. MR 1291582
Reference: [3] BROWN Т. С.-FREEDMAN A. R.: The uniform density of sets of integers and Fermat's Last Theorem.С. R. Math. Acad. Sci. Soc. R. Сan. 12 (1990), 1-9. Zbl 0701.11011
Reference: [4] BUСK R. С.: The measure theoretic approach to density.Amer. J. Math. 68 (1946), 560 580. MR 0018196
Reference: [5] BUСK R. С.: Generalized asymptotic density.Amer. J. Math. 75 (1953), 335-346. MR 0054000
Reference: [6] СARLSON S.: Cauchy sequences and function rings.Amer. Math. Monthlу 88 (1981), 700-701. MR 1539796
Reference: [7] ČERVEŇANSKÝ J.: Statistical convergence and statistical continuity.Zb. Ved. Prác MtF SТU 6 (1998), 207-212.
Reference: [8] СONNOR J. S.: The statistical and strong p-Cesàro convergence of sequences.Analуsis (Munich) 8 (1988), 47-63. MR 0954458
Reference: [9] СONNOR J. S.: Two valued measures and summability.Analуsis (Munich) 10 (1990), 373-385. MR 1085803
Reference: [10] СONNOR J. S.-KLINE J.: On statistical limit points and the consistency of statistical convergence.J. Math. Anal. Appl. 197 (1996), 392-399. MR 1372186
Reference: [11] FASТ H.: Sur la convergence statistique.Соllоq. Math. 2 (1951), 241-244. MR 0048548
Reference: [12] FREEDMAN A. R.-SEMBER J. J.: Densities and summability.Pacific J. Math. 95 (1981), 293-305. Zbl 0504.40002, MR 0632187
Reference: [13] FRIDY J. A.: On statistical convergence.Analуsis (Munich) 5 (1985), 301-313. Zbl 0588.40001
Reference: [14] FRIDY J. A.: Statistical limit points.Prоc. Amer. Math. Sоc. 118 (1993), 1187-1192. Zbl 0776.40001, MR 1181163
Reference: [15] FRIDY J. A.-ORHAN, С : Statistical limit superior and limit inferior.Prоc. Amer. Math.Sоc. 125 (1997), 3625-3631. Zbl 0883.40003, MR 1416085
Reference: [16] GILLMAN L.-JERISON M.: Rings of Continuous Functions.Van Nоstrand, Princetоn, 1950. MR 0116199
Reference: [17] KOSТYRKO P.-MAČAJ M.-ŠALÁТ Т.-SТRAUСH O.: On statistical limit points.Prоc. Amer. Math. Sоc. 129 (2001), 2647-2654.
Reference: [18] KOSТYRKO P.-ŠALÁТ Т.-WILСZYŃSKI W.: $\Cal I$-convergence, Real Anal. Exchange 26 (2000-2001).669-686.
Reference: [19] KURAТOWSKI С.: Topologie I.PWN, Warszawa, 1958.
Reference: [20] MAHARAM D.: Finitely additive measures on the integers.Sankhуä Ser. A 38 (1976), 44-54. Zbl 0383.60008, MR 0473132
Reference: [21] MAČAJ M.-MIŠÍK L.-ŠALÁТ Т.-ТOMANOVÁ J.: On a class of densities of sets of positive integers.Acta Math. Univ. Соmenian. (N.S.) 72 (2003), 213-221. Zbl 1087.11006, MR 2040266
Reference: [22] MAZUR K.: $F_\sigma$-ideals and and $\omega_1\omega_1^\ast$ -gaps in the Boolean algebras $P(\omega)/I$.Fund. Math. 138 (1991), 103-111. MR 1124539
Reference: [23] MIKUSIŃSKI P.: Axiomatic theory of convergence.Pr. Nauk. Uniw. ŚI. Katow. 12 (1982), 13-21. (Polish) Zbl 0508.40003, MR 0663359
Reference: [24] MILLER H. I.: A measure theoretical subsequence characterization of statistical convergence.Trans. Amer. Math. Soc. 347 (1995), 1811-1819. Zbl 0830.40002, MR 1260176
Reference: [25] NAGATA J.: Modern General Topology.Noth-Holland Publ. Comp., Amsterdam-London, 1974. MR 0474164
Reference: [26] NEUBRUN T.-SMÍTAL J.-ŠALÁT T.: On the structure of the space $M(0, 1)$.Rev. Roumaine Math. Pures Appl. 13 (1968), 377-386. MR 0234275
Reference: [27] NURAY F.-RUCKLE W. H.: Generalized statistical convergence and convergence free spaces.J. Math. Anal. Appl. 245 (2000), 513-527. Zbl 0955.40001, MR 1758553
Reference: [28] OLEVSKII V.: A note on the Banach-Steinhaus theorem.Real Anal. Exchange 17 (1991-1992), 399-401. MR 1147379
Reference: [29] OSTMANN H. H.: Additive Zahlentheorie I.Springer-Verlag, Berlin-Gottingen-Heidelberg, 1956. Zbl 0072.03101, MR 0098721
Reference: [30] PETERSEN G. M.: Regular Matrix Transformations.Mc Graw-Hill, London-New York-Toronto-Sydney, 1966. Zbl 0159.35401, MR 0225045
Reference: [31] POWELL B. J.-ŠALÁT T.: Convergene of subseries of the harmonic series and asymptotic densities of sets of positive integers.Publ. Inst. Math. (Beograd) (N.S.) 50(64) (1991), 60-70. MR 1252159
Reference: [32] ŠALÁT T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. Zbl 0437.40003, MR 0587239
Reference: [33] ŠALÁT T.-TIJDEMAN R.: Asymptotic densities of sets of positive integers.Math. Slovaca 33 (1983), 199-207. Zbl 0516.10052, MR 0699090
Reference: [34] ŠALÁT T.-TIJDEMAN R.: On density measures of sets of positive integers.In: Topics in Classical Number Theory. Colloq. Math. Soc. Janos Bolyai 34, Budapest, 1981, pp. 1445-1457. MR 0781191
Reference: [35] ŠALÁT T.-TOMANOVA J.: On the product of divisors of a positive integer.Math. Slovaca 52 (2002), 271-287. Zbl 1005.11002, MR 1936333
Reference: [36] SCHINZEL A.-ŠALÁT T.: Remarks on maximum and minimum exponents in factoring.Math. Slovaca 44 (1994), 505-514. Zbl 0821.11004, MR 1338424
Reference: [37] SCHOENBERG I. J.: The integrability of certain functions and related summability methods.Amer. Math. Monthly 66 (1959), 361-375. Zbl 0089.04002, MR 0104946
Reference: [38] THOMSON B. S.: Real Functions.Springer-Verlag, Berlin-Gottingen-Heidelberg-New York-Tokyo, 1985. Zbl 0581.26001, MR 0818744
Reference: [39] ZAJÍČEK L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 (1987-88), 314-350. Zbl 0666.26003, MR 0943561
.

Files

Files Size Format View
MathSlov_55-2005-4_6.pdf 1.098Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo