Previous |  Up |  Next

Article

Title: Partial line graph operator and half-arc-transitive group actions (English)
Author: Marušič, Dragan
Author: Nedela, Roman
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 51
Issue: 3
Year: 2001
Pages: 241-257
.
Category: math
.
MSC: 05C25
MSC: 20B25
idZBL: Zbl 0984.05045
idMR: MR1842312
.
Date available: 2009-09-25T11:51:47Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132909
.
Reference: [1] BIGGS N.-WHITE A. T.: Permutation Groups and Combinatorial Structures.Cambridge University Press, Cambridge, 1979. Zbl 0415.05002, MR 0540889
Reference: [2] BONDY A.-MURTY U. S. R.: Graph Theory with Applications.American Elsevier, New York, 1976. Zbl 1226.05083, MR 0411988
Reference: [3] COXETER H. S. M.-MOSER W. O. J.: Generators and Relations for Discrete Groups.Springer-Verlag, New York, 1972. Zbl 0239.20040, MR 0349820
Reference: [4] DIXON J. D.-MORTIMER B.: Permutation Groups.Springer-Verlag, New York, 1996. Zbl 0951.20001, MR 1409812
Reference: [5] MARUSIC D.: Half-transitive group actions on finite graphs of valency 4.J. Combin. Theory Ser. B 73 (1998), 41-76. Zbl 0924.05034, MR 1620595
Reference: [6] MARUSIC D.: Recent developments in half-transitive graphs.Discrete Math. 182 (1998), 219-231. Zbl 0891.05036, MR 1603691
Reference: [7] MARUSlC D.: Half-arc-transitive graphs of valency 4 with large vertex stabilizers.(Submitted).
Reference: [8] MARUSIC D.-NEDELA R.: Finite graphs of valency 4 and girth 4 admitting half-transitive group actions.(Submitted). Zbl 1017.05048
Reference: [9] MARUSlC D.-NEDELA R.: On the point stabilizers of transitive groups with non-self-paired suborbits of length 2.J. Group Theory 4 (2001), 19-43. MR 1808836
Reference: [10] NEUMANN P. M.: Finite permutation groups, edge-coloured graphs and matrices.In: Topics in Group Theory and Computation (Proc. Summer School, University Coll., Galway, 1973), Academic Press, London, 1977, pp. 82-118. MR 0472974
Reference: [11] SIMS C. C.: Graphs and finite permutation groups II.Math. Z. 103 (1968), 276-281. Zbl 0259.20003, MR 0225865
Reference: [12] TUTTE W. T.: A family of cubical graphs.Math. Proc. Cambridge Philoc. Soc. 43 (1948), 459-474. MR 0021678
Reference: [13] WIELANDT H.: Finite Permutation Groups.Academic Press, New York, 1964. Zbl 0138.02501, MR 0183775
Reference: [14] WONG W. J.: Determination of a class of primitive permutation groups.Math. Z. 99 (1967), 235-246. Zbl 0189.31204, MR 0214653
.

Files

Files Size Format View
MathSlov_51-2001-3_1.pdf 1.187Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo