Title:
|
Differential forms on manifolds with a polynomial structure (English) |
Author:
|
Vanžurová, Alena |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
48 |
Issue:
|
5 |
Year:
|
1998 |
Pages:
|
527-533 |
. |
Category:
|
math |
. |
MSC:
|
58A05 |
MSC:
|
58A10 |
MSC:
|
58A30 |
idZBL:
|
Zbl 0965.58002 |
idMR:
|
MR1697614 |
. |
Date available:
|
2009-09-25T11:33:28Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133155 |
. |
Reference:
|
[1] CHERN S. S.: Complex Manifolds.Izd. Inostr. Lit., Moskvа, 1961. Zbl 0098.35201 |
Reference:
|
[2] GOLDBERG S. L.-PETRIDIS N. C.: Differentiable solutions of algebraic equations on manifolds.Kôdаi Mаth. Sem. Rep. 25 (1973), 111-128. Zbl 0253.53034, MR 0315627 |
Reference:
|
[3] GOLDBERG S. I.-YANO K.: Polynomial structures on manifolds.Kôdаi Mаth. Sem. Rep. 22 (1970), 199-218. Zbl 0194.52702, MR 0267478 |
Reference:
|
[4] KOBAYSHI S.: Foundations of Differential Geometry II.Intersc. Publ., New York-London-Sydney, 1969. |
Reference:
|
[5] LEHMANN-LEJEUNE J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangentx.Ann. Inst. Fourier (Grenoble) 16 (1966), 329 387. MR 0212720 |
Reference:
|
[6] LEHMANN-LEJEUNE J.: Sur ľintégrabilité de certaines G-structures.C. R. Acаd. Sci. Pаris Sér. I Mаth. 258 (1984), 32-35. |
Reference:
|
[7] MIZNER R. I.: Almost CR structures, f -structures, almost product structures and associated connections.Rocky Mountаin J. Mаth. 23 (1993), 1337-1359. Zbl 0806.53030, MR 1256452 |
Reference:
|
[8] PHAM MAU QUAM: Introduction à la géométrie des variétés différentiables.Dunod, Pаris, 1968. |
Reference:
|
[9] VANŽURA J.: Integrability conditions for polynomial structures.Kodаi Mаth. Sem. Rep. 27 (1976), 42-50. Zbl 0326.53050, MR 0400106 |
Reference:
|
[10] VANŽUROVÁ A.: Polynomial structures with double roots.Actа Univ. Pаlаck. Olomouc . Fаc. Rerum Nаtur. Mаth. 36 (1997), 187-196. Zbl 0958.53023, MR 1620557 |
Reference:
|
[11] WALKER A. G.: Almost-product structures.In: Differentiаl geometry. Proc. Sympos. Pure Mаth. 3, Amer. Mаth. Soc, Providence, RI, 1961, pp. 94-100. Zbl 0103.38801, MR 0123993 |
Reference:
|
[12] YANO K.: On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^3 + f = 0$.Tensor 14 (1963), 99-109. MR 0159296 |
. |