Previous |  Up |  Next

Article

Title: Sequences between d-sequences and sequences of linear type (English)
Author: Kulosman, Hamid
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: The notion of a d-sequence in Commutative Algebra was introduced by Craig Huneke, while the notion of a sequence of linear type was introduced by Douglas Costa. Both types of sequences gene\-ra\-te ideals of linear type. In this paper we study another type of sequences, that we call c-sequences. They also generate ideals of linear type. We show that c-sequences are in between d-sequences and sequences of linear type and that the initial subsequences of c-sequences are c-sequences. Finally we prove a statement which is useful for computational aspects of the theory of c-sequences. (English)
Keyword: ideal of linear type
Keyword: c-sequence
Keyword: d-sequence
Keyword: sequence of linear type
MSC: 13A15
MSC: 13A30
MSC: 13B25
MSC: 13C13
idZBL: Zbl 1212.13001
idMR: MR2562799
.
Date available: 2009-08-18T12:22:30Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133410
.
Reference: [1] Costa D.: Sequences of linear type.J. Algebra 94 (1985), 256--263. Zbl 0595.13001, MR 0789548, 10.1016/0021-8693(85)90211-X
Reference: [2] Fiorentini M.: On relative regular sequences.J. Algebra 18 (1971), 384--389. Zbl 0224.13011, MR 0277517, 10.1016/0021-8693(71)90068-8
Reference: [3] Herzog J., Simis A., Vasconcelos W.: Koszul homology and blowing-up rings.Commutative Algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math. 84, Dekker, New York, 1983, pp. 79--169. Zbl 0499.13002, MR 0686942
Reference: [4] Huneke C.: On the symmetric and Rees algebra of an ideal generated by a d-sequence.J. Algebra 62 (1980), 268--275. Zbl 0439.13001, MR 0563225, 10.1016/0021-8693(80)90179-9
Reference: [5] Huneke C.: Symbolic powers of prime ideals and special graded algebras.Comm. Algebra 9 (1981), 339--366. Zbl 0454.13003, MR 0605026, 10.1080/00927878108822586
Reference: [6] Huneke C.: The theory of d-sequences and powers of ideals.Adv. in Math. 46 (1982), 249--279. Zbl 0505.13004, MR 0683201, 10.1016/0001-8708(82)90045-7
Reference: [7] Kühl M.: On the symmmetric algebra of an ideal.Manuscripta Math. 37 (1982), 49--60. MR 0649563, 10.1007/BF01239944
Reference: [8] Valla G.: On the symmetric and Rees algebras of an ideal.Manuscripta Math. 30 (1980), 239--255. Zbl 0471.13002, MR 0557107, 10.1007/BF01303330
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_1.pdf 189.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo