Previous |  Up |  Next

Article

Keywords:
nonorientable Klein surface; dianalytic self-map; Julia set; Fatou set; dianalytic dynamics
Summary:
This paper is an introduction to dynamics of dianalytic self-maps of nonorientable Klein surfaces. The main theorem asserts that dianalytic dynamics on Klein surfaces can be canonically reduced to dynamics of some classes of analytic self-maps on their orientable double covers. A complete list of those maps is given in the case where the respective Klein surfaces are the real projective plane, the pointed real projective plane and the Klein bottle.
References:
[1] Ahlfors, L. V., Sario, L.: Riemann Surfaces. Princeton University Press, 1960. MR 0114911
[2] Alling, N., Greenleaf, N.: The Foundation of Theory of Klein Surfaces. Lect. Notes Math. 219, Springer, 1971. DOI 10.1007/BFb0060988 | MR 0333163
[3] Andreian Cazacu, C.: On the Morphisms of Klein Surfaces. Rev. Roum. Math. Pures Appl. 31 (1986), 461–470. MR 0856197 | Zbl 0604.30054
[4] Barza, I.: The dianalytic morphisms of the Klein bottles. Lect. Notes Math, 1351, Springer, 1988, pp. 38–51. MR 0982071 | Zbl 0658.30039
[5] Barza, I., Ghisa, D., Ianus, S.: Some Remarks on the Nonorientable Surfaces. Publications de l’Institut Mathématique, Tome 63 (1998), 47–54. MR 1633690
[6] Barza, I., Ghisa, D.: Measure and integration on nonorientable Klein surfaces. Int. J. Pure Appl. Math. 1 (2002), 117–134. MR 1900221
[7] Bujalance, E. et al.: Automorphism Groups of Compact Bordered Klein Surfaces. Lect. Notes Math. 1439, Springer, 1990. MR 1075411 | Zbl 0709.14021
[8] Eremenko, A. E., Lyubich, M. Yu.: The Dynamics of Analytic Transformations. Lening. Math. J. 1 (1990), 563–634. (Russian, English) MR 1015124
[9] Forster, O.: Lectures on Riemann Surfaces. Springer, 1981. MR 0648106 | Zbl 0475.30002
[10] Gunning, R. C.: Lectures on Vector Bundles over Riemann Surfaces. Princeton Univ. Press, Princeton, 1967. MR 0230326 | Zbl 0163.31903
[11] Keen, L.: Dynamics of Holomorphic Self-Maps of $C^*$. Holomorphic Functions and Moduli I., Drasin, D. et al. (eds.), Springer, 1988, pp. 9–30. MR 0955806
[12] Lehto, O.: Univalent Functions and Teichmüller Spaces. Springer, 1987. MR 0867407 | Zbl 0606.30001
[13] Milnor, J.: Dynamics in One Complex Variable. Vieweg, Wiesbaden, 1999. MR 1721240 | Zbl 0946.30013
[14] McMullen, C. T.: Complex Dynamics and Renormalization. Princeton University Press, Princeton, 1994. MR 1312365
Partner of
EuDML logo