Previous |  Up |  Next

Article

Title: Pure states on Jordan algebras (English)
Author: Hamhalter, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 1
Year: 2001
Pages: 81-91
Summary lang: English
.
Category: math
.
Summary: We prove that a pure state on a $C^{\ast}$-algebras or a JB algebra is a unique extension of some pure state on a singly generated subalgebra if and only if its left kernel has a countable approximative unit. In particular, any pure state on a separable JB algebra is uniquely determined by some singly generated subalgebra. By contrast, only normal pure states on JBW algebras are determined by singly generated subalgebras, which provides a new characterization of normal pure states. As an application we contribute to the extension problem and strengthen the hitherto known results on independence of operator algebras arising in the quantum field theory. (English)
Keyword: JB algebras
Keyword: $C^{\ast}$-algebras
Keyword: pure states
Keyword: state space independence of Jordan algebras
Keyword: normal pure states on JBW algebras
MSC: 17C65
MSC: 46H70
MSC: 46L30
MSC: 46L70
MSC: 81P10
idZBL: Zbl 0983.46046
idMR: MR1826473
DOI: 10.21136/MB.2001.133911
.
Date available: 2009-09-24T21:47:38Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133911
.
Reference: [1] J. F. Aarnes, R. V. Kadison: Pure states and approximate identities.Proc. Amer. Math. Soc. 21 (1969), 749–752. MR 0240633, 10.1090/S0002-9939-1969-0240633-1
Reference: [2] C. A. Akemann, J. Anderson, G. K. Pedersen: Approaching infinity in $C^\ast $-algebras.J. Operator Theory 21 (1989), 255–271. MR 1023315
Reference: [3] C. A. Akemann: Approximate units and maximal abelian $C^\ast $-subalgebras.Pacific J. Math., 33 (1970), 543–550. Zbl 0184.16903, MR 0264406, 10.2140/pjm.1970.33.543
Reference: [4] C. A. Akemann: Interpolation in $W^\ast $-algebras.Duke Math. J. 35 (1968), 525–533. Zbl 0172.41201, MR 0229048, 10.1215/S0012-7094-68-03553-9
Reference: [5] J. Anderson: Extensions, restrictions, and representations of states on $C^\ast $-algebras.Trans. Amer. Math. Soc. 249 (1979), 303–323. Zbl 0408.46049, MR 0525675
Reference: [6] J. Anderson: Extreme points in sets of positive linear maps on $B(H)$.J. Func. Anal. 31 (1979), 195–217. MR 0525951, 10.1016/0022-1236(79)90061-2
Reference: [7] J. Anderson: A maximal abelian subalgebra of the Calcin algebra with the extension property.Math. Scand. (1978), 101–110. MR 0500149
Reference: [8] J. Anderson: A conjecture concerning the pure states of $B(H)$ and related theorem.In Topics in modern operator theory (Timisoara/Herculane, 1980), Birkhäuser, Basel-Boston, Mass. (1981), 27–43. MR 0672813
Reference: [9] B. A. Barnes: Pure states with the restriction property.Proc. Amer. Math. Soc. 33 (1972), 491–494. Zbl 0243.46060, MR 0295089, 10.1090/S0002-9939-1972-0295089-X
Reference: [10] J. Bunce: Characters on singly generated $C^\ast $-algebras.Proc. Amer. Math. Soc. 25 (1970), 297–303. Zbl 0195.42006, MR 0259622
Reference: [11] M. Floring, S. J. Summers: On the statistical independence of algebras of observables.J. Math. Phys. 3 (1997), 1318–1328. MR 1435671
Reference: [12] A. M. Gleason: Measures on the closed subspaces of a Hilbert space.J. Math. Mech. 6 (1957), 885–893. Zbl 0078.28803, MR 0096113
Reference: [13] J. G. Glimm, R. V. Kadison: Unitary operators in $C^\ast $-algebras.Pacific J. Math. 10 (1960), 547–556. MR 0115104, 10.2140/pjm.1960.10.547
Reference: [14] J. Hamhalter: Statistical independence of operator algebras.Ann. Inst. Henri Poincaré, 67 (1997), 447–462. Zbl 0893.46048, MR 1632248
Reference: [15] J. Hamhalter: Universal state space embeddability of Jordan-Banach algebras.Proc. Amer. Math. Soc. 127 (1999), 131–137. Zbl 0907.46052, MR 1610905, 10.1090/S0002-9939-99-04919-9
Reference: [16] H.-Olsen. Hanche, E. Stormer: Jordan Operator Algebras.Pitman Publishing, Boston, London, Melbourne, 1984. MR 0755003
Reference: [17] J. M. Jauch: Foundations of Quantum Mechanics.Addison Wesley, 1968. Zbl 0166.23301, MR 0218062
Reference: [18] R. V. Kadison: Irreducible operator algebras.Proceeding of the National Academy of Sciences (U.S.A) 43 (1957), 273–276. Zbl 0078.11502, MR 0085484, 10.1073/pnas.43.3.273
Reference: [19] R. V. Kadison, I. M Singer: Extensions of pure states.American J. Math. 81 (1959), 383–400. MR 0123922, 10.2307/2372748
Reference: [20] G. W. Mackey: Mathematical Foundations of Quantum Mechanics.Benjamin, New York, 1963. Zbl 0114.44002
Reference: [21] G. A. Raggio: States and composite systems in $W^\ast $-algebraic quantum mechanics.Diss. ETH, No. 6824, Zurich, 1981.
Reference: [22] H. Roos: Independence of local algebras in quantum field theory.Commun. Math. Phys. 13 (1969), 216–225. MR 0266539
Reference: [23] E. Stormer: Irreducible Jordan algebras of self-adjoint operators.Trans. Amer. Math. Soc. 130 (1968), 153–166. MR 0217611, 10.1090/S0002-9947-1968-0217611-5
Reference: [24] E. Stormer: A characterization of pure states of $C^\ast $-algebras.Proc. Amer. Math. Soc. 19 (1968), 1100–1102. MR 0232222
Reference: [25] S. J. Summers: On the independence of local algebras in quantum field theory.Reviews in Mathematical Physics 2 (1990), 201–247. Zbl 0743.46079, MR 1090281
.

Files

Files Size Format View
MathBohem_126-2001-1_7.pdf 359.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo