Article
Keywords:
lattice ordered group; weak $\sigma $-distributivity; radical class
Summary:
In this paper we prove that the collection of all weakly distributive lattice ordered groups is a radical class and that it fails to be a torsion class.
References:
                        
[1] P. Conrad: 
$K$-radical classes of lattice ordered groups. Algebra, Proc. Conf. Carbondale 1980, Lecture Notes Math vol. 848, 1981, pp. 186–207. 
MR 0613186 | 
Zbl 0455.06010 
[2] A. Boccuto: 
Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mountains Math. Publ. 10 (1997), 33–54. 
MR 1469280 | 
Zbl 0918.28010 
[3] M. Darnel: 
Closure operations on radicals of lattice ordered groups. Czechoslovak Math. J. 37 (1987), 51–64. 
MR 0875127 
[4] D. Gluschankof: 
Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249–263. 
MR 1211747 | 
Zbl 0795.06015 
[5] J. Jakubík: 
Radical mappings and radical classes of lattice ordered groups. Symposia Math vol. 21, Academic Press, New York-London, 1977, pp. 451–477. 
MR 0491397 
[6] J. Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44 (1994), 725–739.
[8] J. Martinez: 
Torsion theory for lattice-ordered groups. Czechoslovak Math. J. 25 (1975), 284–299. 
MR 0389705 | 
Zbl 0321.06020 
[10] B. Riečan, T. Neubrunn: 
Integral, Measure and Ordering. Kluwer Publ., Dordrecht, 1997. 
MR 1489521 
[11] Dao-Rong Ton: 
Product radical classes of $\ell $-groups. Czechoslovak Math. J. 43 (1992), 129–142. 
MR 1152176