Previous |  Up |  Next

Article

Title: Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions II, Examples (English)
Author: Eisner, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 1
Year: 2001
Pages: 119-140
Summary lang: English
.
Category: math
.
Summary: The destabilizing effect of four different types of multivalued conditions describing the influence of semipermeable membranes or of unilateral inner sources to the reaction-diffusion system is investigated. The validity of the assumptions sufficient for the destabilization which were stated in the first part is verified for these cases. Thus the existence of points at which the spatial patterns bifurcate from trivial solutions is proved. (English)
Keyword: bifurcation
Keyword: spatial patterns
Keyword: reaction-diffusion system
Keyword: mollification
Keyword: inclusions
Keyword: semipermeable membranes
Keyword: unilateral inner sources
MSC: 35B32
MSC: 35J85
MSC: 35K40
MSC: 35K57
MSC: 35K58
MSC: 47H04
MSC: 47N20
idZBL: Zbl 0977.35020
idMR: MR1826476
DOI: 10.21136/MB.2001.133929
.
Date available: 2009-09-24T21:48:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133929
.
Reference: [1] J. Eisner: Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions.Math. Bohem. 125 (2000), 385–420. MR 1802290
Reference: [2] J. Eisner, M. Kučera: Spatial patterns for reaction-diffusion systems with conditions described by inclusions.Appl. Math. 42 (1997), 421–449. MR 1475051, 10.1023/A:1022203129542
Reference: [3] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer, Berlin, 1983. MR 0737190
Reference: [4] V. G. Maz’ya, S. V. Poborchi: Differentiable Functions on Bad Domains.World Scientific, Singapore, 1997. MR 1643072
Reference: [5] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584
Reference: [6] R. E. Showalter: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs, AMS, Providence, RI, 1997. MR 1422252
.

Files

Files Size Format View
MathBohem_126-2001-1_10.pdf 458.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo