Previous |  Up |  Next

Article

Title: Oscillatory and nonoscillatory behaviour of solutions of difference equations of the third order (English)
Author: Parhi, N.
Author: Panda, Anita
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 1
Year: 2008
Pages: 99-112
Summary lang: English
.
Category: math
.
Summary: In this paper, sufficient conditions are obtained for oscillation of all solutions of third order difference equations of the form \[ y_{n+3} +r_{n} y_{n+2} +q_{n} y_{n+1} +p_{n} y_{n} =0,\quad n\ge 0. \] These results are generalization of the results concerning difference equations with constant coefficients \[y_{n+3} +ry_{n+2} +qy_{n+1} +py_{n} =0,\quad n\ge 0.\] Oscillation, nonoscillation and disconjugacy of a certain class of linear third order difference equations are discussed with help of a class of linear second order difference equations. (English)
Keyword: third order difference equation
Keyword: oscillation
Keyword: nonoscillation
Keyword: disconjugacy
Keyword: generalized zero
MSC: 39A06
MSC: 39A10
MSC: 39A11
MSC: 39A12
MSC: 39A21
idZBL: Zbl 1199.39016
idMR: MR2400154
DOI: 10.21136/MB.2008.133942
.
Date available: 2009-09-24T22:34:57Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133942
.
Reference: [1] J. Henderson, A. Peterson: Disconjugacy for a third order linear difference equation.Comput. Math. Appl. 28 (1994), 131–139. MR 1284228, 10.1016/0898-1221(94)00101-4
Reference: [2] J. W. Hooker, W. T. Patula: Riccati type transformations for second order linear difference equations.J. Math. Anal. Appl. 82 (1981), 451–462. MR 0629769, 10.1016/0022-247X(81)90208-0
Reference: [3] W. G. Kelley, A. C. Peterson: Difference Equations: An Introduction with Applications.Academic Press, New York, 1991. MR 1142573
Reference: [4] N. Parhi, A. K. Tripathy: On oscillatory third order difference equations.J. Difference Eqns. Appl. 6 (2000), 53–74. MR 1752155, 10.1080/10236190008808213
Reference: [5] N. Parhi, A. K. Tripathy: On the behaviour of solutions of a class of third order difference equations.J. Difference Eqns. Appl. 8 (2002), 415–426. MR 1897066, 10.1080/10236190290017423
Reference: [6] A. K. Tripathy: Study of Oscillatory and Asymptotic Behaviour of Solutions of Difference Equations.Ph.D. thesis.
.

Files

Files Size Format View
MathBohem_133-2008-1_9.pdf 272.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo