Previous |  Up |  Next

Article

Title: Existence of mild solutions of second order initial value problems for delay integrodifferential inclusions with nonlocal conditions (English)
Author: Benchohra, M.
Author: Ntouyas, S. K.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 4
Year: 2002
Pages: 613-622
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the existence of mild solutions to second order initial value problems for a class of delay integrodifferential inclusions with nonlocal conditions. We rely on a fixed point theorem for condensing maps due to Martelli. (English)
Keyword: initial value problems
Keyword: convex multivalued map
Keyword: mild solution
Keyword: evolution inclusion
Keyword: nonlocal condition
Keyword: fixed point
MSC: 34A60
MSC: 34G20
MSC: 34G25
MSC: 34K30
MSC: 35R10
MSC: 45J05
MSC: 47H20
MSC: 47N20
idZBL: Zbl 1017.34061
idMR: MR1942647
DOI: 10.21136/MB.2002.133952
.
Date available: 2009-09-24T22:05:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133952
.
Reference: [1] K. Balachandran, M. Chandrasekaran: Existence of solutions of a delay differential equation with nonlocal condition.Indian J. Pure Appl. Math. 27 (1996), 443–449. MR 1387239
Reference: [2] J. Banas, K. Goebel: Measures of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. MR 0591679
Reference: [3] M. Benchohra, S. K. Ntouyas: Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal conditions.Dynam. Systems Appl. 9 (2000), 405–412. MR 1844640
Reference: [4] L. Byszewski: Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem.Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. (1993), 109–112. MR 1274697
Reference: [5] L. Byszewski: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494–505. Zbl 0748.34040, MR 1137634, 10.1016/0022-247X(91)90164-U
Reference: [6] K. Deimling: Multivalued Differential Equations.Walter de Gruyter, Berlin, 1992. Zbl 0820.34009, MR 1189795
Reference: [7] H. O. Fattorini: Ordinary differential equations in linear topological spaces, I.J. Differ. Equations 5 (1968), 72–105. MR 0277860
Reference: [8] H. O. Fattorini: Ordinary differential equations in linear topological spaces, II.J. Differ. Equations 6 (1969), 50–70. MR 0277861, 10.1016/0022-0396(69)90117-X
Reference: [9] J. A. Goldstein: Semigroups of Linear Operators and Applications.Oxford Univ. Press, New York, 1985. Zbl 0592.47034, MR 0790497
Reference: [10] S. Heikkila, V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations.Marcel Dekker, New York, 1994. MR 1280028
Reference: [11] Sh. Hu, N. Papageorgiou: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, 1997. MR 1485775
Reference: [12] A. Lasota, Z. Opial: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. MR 0196178
Reference: [13] M. Martelli: A Rothe’s type theorem for non-compact acyclic-valued map.Boll. Un. Mat. Ital. 4 (1975), 70–76. MR 0394752
Reference: [14] S. K. Ntouyas, P. Ch. Tsamatos: Global existence for semilinear evolution equations with nonlocal conditions.J. Math. Anal. Appl. 210 (1997), 679–687. MR 1453198, 10.1006/jmaa.1997.5425
Reference: [15] S. K. Ntouyas, P. Ch. Tsamatos: Global existence for second order semilinear ordinary and delay integrodifferential equations with nonlocal conditions.Appl. Anal. 67 (1997), 245–257. MR 1614061, 10.1080/00036819708840609
Reference: [16] S. K. Ntouyas: Global existence results for certain second order delay integrodifferential equations with nonlocal conditions.Dynam. Systems. Appl. 7 (1998), 415–426. Zbl 0914.35148, MR 1639604
Reference: [17] C. C. Travis, G. F. Webb: Second order differential equations in Banach spaces.Proc. Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978, pp. 331–361. MR 0502551
Reference: [18] C. C. Travis, G. F. Webb: Cosine families and abstract nonlinear second order differential equations.Acta Math. Hung. 32 (1978), 75–96. MR 0499581, 10.1007/BF01902205
Reference: [19] K. Yosida: Functional Analysis, 6th edn.Springer, Berlin, 1980. MR 0617913
.

Files

Files Size Format View
MathBohem_127-2002-4_12.pdf 310.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo