Previous |  Up |  Next

Article

Title: Substitution formulas for the Kurzweil and Henstock vector integrals (English)
Author: Federson, M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 1
Year: 2002
Pages: 15-26
Summary lang: English
.
Category: math
.
Summary: Results on integration by parts and integration by substitution for the variational integral of Henstock are well-known. When real-valued functions are considered, such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space valued context, the Kurzweil integral properly contains that of Henstock. In the present paper, we consider abstract vector integrals of Kurzweil and prove Substitution Formulas by functional analytic methods. In general, Substitution Formulas need not hold for Kurzweil vector integrals even if they are defined. (English)
Keyword: Kurzweil-Henstock integrals
Keyword: integration by parts
Keyword: integration by substitution
MSC: 26A39
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1002.28012
idMR: MR1895242
DOI: 10.21136/MB.2002.133979
.
Date available: 2009-09-24T21:57:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133979
.
Reference: [1] Federson, M.: The Fundamental Theorem of Calculus for multidimensional Banach space-valued Henstock vector integrals.Real Anal. Exchange 25 (2000), 469–480. Zbl 1015.28012, MR 1758903
Reference: [2] Federson, M., Bianconi, R.: Linear integral equations of Volterra concerning the integral of Henstock.Real Anal. Exchange 25 (2000), 389–417. MR 1758896
Reference: [3] Henstock, R.: The General Theory of Integration.Oxford Math. Monog., Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656
Reference: [4] Hönig, C. S.: Volterra-Stieltjes Integral Equations.Math. Studies, 16, North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969
Reference: [5] Hönig, C. S.: There is no natural Banach space norm on the space of Kurzweil-Henstock-Denjoy-Perron integrable functions.Seminário Brasileiro de Análise 30 (1989), 387–397.
Reference: [6] Hönig, C. S.: A Riemaniann characterization of the Bochner-Lebesgue integral.Seminário Brasileiro de Análise 35 (1992), 351–358.
Reference: [7] Lee, P. Y.: Lanzhou Lectures on Henstock Integration.World Sci., Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [8] McShane, E. J.: A unified theory of integration.Amer. Math. Monthly 80 (1973), 349–359. Zbl 0266.26008, MR 0318434, 10.1080/00029890.1973.11993291
Reference: [9] Schwabik, Š.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425–447. Zbl 0879.28021, MR 1428144
.

Files

Files Size Format View
MathBohem_127-2002-1_2.pdf 336.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo