Title:
|
Mean values and associated measures of $\delta $-subharmonic functions (English) |
Author:
|
Watson, Neil A. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
127 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
83-102 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $u$ be a $\delta $-subharmonic function with associated measure $\mu $, and let $v$ be a superharmonic function with associated measure $\nu $, on an open set $E$. For any closed ball $B(x,r)$, of centre $x$ and radius $r$, contained in $E$, let ${\mathcal M}(u,x,r)$ denote the mean value of $u$ over the surface of the ball. We prove that the upper and lower limits as $s,t\rightarrow 0$ with $0<s<t$ of the quotient $({\mathcal M}(u,x,s)-{\mathcal M}(u,x,t))/({\mathcal M}(v,x,s)-{\mathcal M}(v,x,t))$, lie between the upper and lower limits as $r\rightarrow 0+$ of the quotient $\mu (B(x,r))/\nu (B(x,r))$. This enables us to use some well-known measure-theoretic results to prove new variants and generalizations of several theorems about $\delta $-subharmonic functions. (English) |
Keyword:
|
superharmonic |
Keyword:
|
$\delta $-subharmonic |
Keyword:
|
Riesz measure |
Keyword:
|
spherical mean values |
MSC:
|
31B05 |
idZBL:
|
Zbl 0998.31002 |
idMR:
|
MR1895249 |
DOI:
|
10.21136/MB.2002.133981 |
. |
Date available:
|
2009-09-24T21:58:22Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133981 |
. |
Reference:
|
[1] D. H. Armitage: Domination, uniqueness and representation theorems for harmonic functions in half-spaces.Ann. Acad. Sci. Fenn. Ser. A.I. Math. 6 (1981), 161–172. Zbl 0441.31003, MR 0639973, 10.5186/aasfm.1981.0602 |
Reference:
|
[2] D. H. Armitage: Mean values and associated measures of superharmonic functions.Hiroshima Math. J. 13 (1983), 53–63. Zbl 0512.31009, MR 0693550, 10.32917/hmj/1206133537 |
Reference:
|
[3] A. S. Besicovitch: A general form of the covering principle and relative differentiation of additive functions.Proc. Cambridge Phil. Soc. 41 (1945), 103–110. Zbl 0063.00352, MR 0012325 |
Reference:
|
[4] A. S. Besicovitch: A general form of the covering principle and relative differentiation of additive functions II.Proc. Cambridge Phil. Soc. 42 (1946), 1–10. Zbl 0063.00353, MR 0014414 |
Reference:
|
[5] A. M. Bruckner, A. J. Lohwater, F. Ryan: Some non-negativity theorems for harmonic functions.Ann. Acad. Sci. Fenn. Ser. A.I. 452 (1969), 1–8. MR 0265620 |
Reference:
|
[6] G. Choquet: Potentiels sur un ensemble de capacité nulle. Suites de potentiels.C. R. Acad. Sci. Paris 244 (1957), 1707–1710. Zbl 0086.30601, MR 0087757 |
Reference:
|
[7] J. L. Doob: Classical Potential Theory and its Probabilistic Counterpart.Springer, New York, 1984. Zbl 0549.31001, MR 0731258 |
Reference:
|
[8] K. J. Falconer: The Geometry of Fractal Sets.Cambridge University Press, Cambridge, 1985. Zbl 0587.28004, MR 0867284 |
Reference:
|
[9] H. Federer: Geometric Measure Theory.Springer, Berlin, 1969. Zbl 0176.00801, MR 0257325 |
Reference:
|
[10] B. Fuglede: Some properties of the Riesz charge associated with a $\delta $-subharmonic function.Potential Anal. 1 (1992), 355–371. Zbl 0766.31010, MR 1245891, 10.1007/BF00301788 |
Reference:
|
[11] A. F. Grishin: Sets of regular increase of entire functions.Teor. Funkts., Funkts. Anal. Prilozh. 40 (1983), 36–47. (Russian) Zbl 0601.30036, MR 0738442 |
Reference:
|
[12] M. Sodin: Hahn decomposition for the Riesz charge of $\delta $-subharmonic functions.Math. Scand. 83 (1998), 277–282. Zbl 1023.31005, MR 1673934, 10.7146/math.scand.a-13856 |
Reference:
|
[13] C. Tricot: Two definitions of fractional dimension.Math. Proc. Cambridge Phil. Soc. 91 (1982), 57–74. Zbl 0483.28010, MR 0633256, 10.1017/S0305004100059119 |
Reference:
|
[14] N. A. Watson: Superharmonic extensions, mean values and Riesz measures.Potential Anal. 2 (1993), 269–294. Zbl 0785.31002, MR 1245245, 10.1007/BF01048511 |
Reference:
|
[15] N. A. Watson: Applications of geometric measure theory to the study of Gauss-Weierstrass and Poisson integrals.Ann. Acad. Sci. Fenn. Ser. A.I. Math. 19 (1994), 115–132. Zbl 0793.31001, MR 1246891 |
Reference:
|
[16] N. A. Watson: Domination and representation theorems for harmonic functions and temperatures.Bull. London Math. Soc. 27 (1995), 467–472. Zbl 0841.31007, MR 1338690, 10.1112/blms/27.5.467 |
. |