Title:
|
HC-convergence theory of $L$-nets and $L$-ideals and some of its applications (English) |
Author:
|
Nouh, A. A. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
128 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
349-366 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we introduce and study the concepts of $\operatorname{\text{HC}}$-closed set and $\operatorname{\text{HC}}$-limit ($\operatorname{\text{HC}}$-cluster) points of $L$-nets and $L$-ideals using the notion of almost $N$-compact remoted neighbourhoods in $L$-topological spaces. Then we introduce and study the concept of $\operatorname{\text{HL}}$-continuous mappings. Several characterizations based on $\operatorname{\text{HC}}$-closed sets and the $\operatorname{\text{HC}}$-convergence theory of $L$-nets and $L$-ideals are presented for $\operatorname{\text{HL}}$-continuous mappings. (English) |
Keyword:
|
$L$-topology |
Keyword:
|
remoted neighbourhood |
Keyword:
|
almost $N$-compactness |
Keyword:
|
$\operatorname{\text{HC}}$-closed set |
Keyword:
|
$\operatorname{\text{HL}}$-continuity |
Keyword:
|
$L$-net |
Keyword:
|
$L$-ideal |
Keyword:
|
$\operatorname{\text{HC}}$-convergence theory |
MSC:
|
54A20 |
MSC:
|
54A40 |
MSC:
|
54C08 |
MSC:
|
54H12 |
idZBL:
|
Zbl 1053.54505 |
idMR:
|
MR2032473 |
DOI:
|
10.21136/MB.2003.134000 |
. |
Date available:
|
2009-09-24T22:10:42Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134000 |
. |
Reference:
|
[1] S. L. Chen: Theory of $L$-fuzzy $H$-sets.Fuzzy Sets and Systems 51 (1992), 89–94. Zbl 0788.54004, MR 1187375 |
Reference:
|
[2] S. L. Chen, X. G. Wang: $L$-fuzzy $N$-continuous mappings.J. Fuzzy Math. 4 (1996), 621–629. MR 1410635 |
Reference:
|
[3] S. L. Chen, S. T. Chen: A new extension of fuzzy convergence.Fuzzy Sets and Systems 109 (2000), 199–204. MR 1719626 |
Reference:
|
[4] S. Dang, A. Behera: Fuzzy $H$-continuous functions.J. Fuzzy Math. 3 (1995), 135–145. MR 1322865 |
Reference:
|
[5] J. M. Fang: Further characterizations of $L$-fuzzy $H$-set.Fuzzy Sets and Systems 91 (1997), 355–359. Zbl 0917.54011, MR 1481282, 10.1016/S0165-0114(96)00153-4 |
Reference:
|
[6] M. Han, M. Guangwu: Almost $N$-compact sets in $L$-fuzzy topological spaces.Fuzzy Sets and Systems 91 (1997), 115–122. MR 1481275, 10.1016/S0165-0114(96)00123-6 |
Reference:
|
[7] U. Höhle, S. E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory.The Handbooks of Fuzzy Series 3, Kluwer Academic Publishers, Dordrecht, 1999. MR 1788899 |
Reference:
|
[8] Y. M. Liu, M. K. Luo: Fuzzy Stone-Čech-type compactifications.Fuzzy Sets and Systems 33 (1989), 355–372. MR 1033881 |
Reference:
|
[9] Y. M. Liu, M. K. Luo: Separations in lattice-valued induced spaces.Fuzzy Sets and Systems 36 (1990), 55–66. MR 1063271, 10.1016/0165-0114(90)90078-K |
Reference:
|
[10] P. E. Long, T. R. Hamlett: $H$-continuous functions.Bolletino U. M. I. 11 (1975), 552–558. MR 0383336 |
Reference:
|
[11] M. N. Mukherjee, S. P. Sinha: Almost compact fuzzy sets in fuzzy topological spaces.Fuzzy Sets and Systems 48 (1990), 389–396. MR 1083070 |
Reference:
|
[12] G. J. Wang: A new fuzzy compactness defined by fuzzy nets.J. Math. Anal. Appl. 94 (1983), 59–67. Zbl 0512.54006, MR 0701446 |
Reference:
|
[13] G. J. Wang: Generalized topological molecular lattices.Scientia Sinica (Ser. A) 27 (1984), 785–793. Zbl 0599.54005, MR 0795162 |
Reference:
|
[14] G. J. Wang: Theory of $L$-Fuzzy Topological Spaces.Shaanxi Normal University Press, Xi’an, 1988. |
Reference:
|
[15] Z. Q. Yang: Ideal in topological molecular lattices.Acta Mathematica Sinica 29 (1986), 276–279. MR 0855716 |
Reference:
|
[16] D. S. Zhao: The $N$-compactness in $L$-fuzzy topological spaces.J. Math. Anal. Appl. 128 (1987), 64–79. Zbl 0639.54006, MR 0915967, 10.1016/0022-247X(87)90214-9 |
. |