Previous |  Up |  Next


distance; resolving set; independent set
For an ordered set $W=\lbrace w_1, w_2, \dots , w_k\rbrace $ of vertices in a connected graph $G$ and a vertex $v$ of $G$, the code of $v$ with respect to $W$ is the $k$-vector \[ c_W(v) = (d(v, w_1), d(v, w_2), \dots , d(v, w_k) ). \] The set $W$ is an independent resolving set for $G$ if (1) $W$ is independent in $G$ and (2) distinct vertices have distinct codes with respect to $W$. The cardinality of a minimum independent resolving set in $G$ is the independent resolving number $\mathop {\mathrm ir}(G)$. We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs $G$ of order $n$ with $\mathop {\mathrm ir}(G) = 1$, $n-1$, $n-2$, and present several realization results. It is shown that for every pair $r, k$ of integers with $k \ge 2$ and $0 \le r \le k$, there exists a connected graph $G$ with $\mathop {\mathrm ir}(G) = k$ such that exactly $r$ vertices belong to every minimum independent resolving set of $G$.
[1] F. Buckley, F. Harary: Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990. MR 1045632
[2] G. Chartrand, L. Lesniak: Graphs $\&$ Digraphs, third edition. CRC Press, Boca Raton, 1996. MR 1408678
[3] F. Harary, R. A. Melter: On the metric dimension of a graph. Ars Combin. 2 (1976), 191–195. MR 0457289
[4] P. J. Slater: Leaves of trees. Congress. Numer. 14 (1975), 549–559. MR 0422062 | Zbl 0316.05102
[5] P. J. Slater: Dominating and reference sets in graphs. J. Math. Phys. Sci. 22 (1988), 445–455. MR 0966610
Partner of
EuDML logo