Previous |  Up |  Next


sample extremes; domain of attraction; normalizing constants; FGM system of distributions
The prediction of size extremes in Wicksell’s corpuscle problem with oblate spheroids is considered. Three-dimensional particles are represented by their planar sections (profiles) and the problem is to predict their extremal size under the assumption of a constant shape factor. The stability of the domain of attraction of the size extremes is proved under the tail equivalence condition. A simple procedure is proposed of evaluating the normalizing constants from the tail behaviour of appropriate distribution functions and its results are employed for the estimation of the spheroid size. Examples covering families of Gamma, Pareto and Weibull distributions are provided. A short discussion of maximum likelihood estimators of the normalizing constants is also included.
[1] V. Beneš, K. Bodlák, D. Hlubinka: Stereology of extremes; bivariate models and computation. Methodol. Comput. Appl. Probab 5 (2003), no. 3, 289–308. DOI 10.1023/A:1026283103180 | MR 2016768
[2] L.-M. Cruz-Orive: Particle size-shape distributions; the general spheroid problem. J. Microscopy 107 (1976), no. 3, 235–253. DOI 10.1111/j.1365-2818.1976.tb02446.x
[3] H. Drees, R.-D. Reiss: Tail behavior in Wicksell’s corpuscle problem. Probability Theory and Applications, J. Galambos, J. Kátai (eds.), Kluwer, Dordrecht, 1992, pp. 205–220. MR 1211909
[4] P. Embrechts, C. Klüppelberg, T. Mikosh: Modelling Extremal Events. Springer, Berlin, 1997. MR 1458613
[5] L. de Haan: On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Math. Centre Tracts 32, Mathematisch Centrum, Amsterdam, 1970. MR 0286156 | Zbl 0226.60039
[6] B. M. Hill: A simple general approach to inference about the tail of a distribution. Ann. Stat. (1975), 1163–1174. MR 0378204 | Zbl 0323.62033
[7] D. Hlubinka: Stereology of extremes; shape factor of spheroids. Extremes 6 (2003), no. 1, 5–24. DOI 10.1023/A:1026234329084 | MR 2021590 | Zbl 1051.60011
[8] D. Hlubinka: Extremes of spheroid shape factor based on two dimensional profiles. (2003) (to appear). MR 2021590
[9] R.-D. Reiss: A Course on Point Processes. Springer, New York, 1993. MR 1199815 | Zbl 0771.60037
[10] R.-D. Reiss, M. Thomas: Statistical Analysis of Extreme Values. From Insurance, Finance, Hydrology and Other Fields. Birkhäuser, Basel, 2001. MR 1819648
[11] R. Takahashi: Normalizing constants of a distribution which belongs to the domain of attraction of the Gumbel distribution. Stat. Probab. Lett. 5 (1987), 197–200. DOI 10.1016/0167-7152(87)90039-3 | MR 0881196 | Zbl 0617.62050
[12] R. Takahashi, M. Sibuya: The maximum size of the planar sections of random spheres and its application to metalurgy. Ann. Inst. Stat. Math. 48 (1996), no. 1, 127–144. DOI 10.1007/BF00049294 | MR 1392521
[13] R. Takahashi, M. Sibuya: Prediction of the maximum size in Wicksell’s corpuscle problem. Ann. Inst. Stat. Math. 50 (1998), no. 2, 361–377. DOI 10.1023/A:1003451417655 | MR 1868939
[14] R. Takahashi, M. Sibuya: Prediction of the maximum size in Wicksell’s corpuscle problem. Ann. Inst. Stat. Math. 53 (2001), no. 3, 647–660. DOI 10.1023/A:1014697919230 | MR 1868897
[15] I. Weissman: Estimation of parameters and large quantiles based on the $k$ largest observations. J. Am. Stat. Assoc. 73 (1978), no. 364, 812–815. MR 0521329 | Zbl 0397.62034
[16] S. D. Wicksell: The corpuscle problem I. Biometrika 17 (1925), 84–99.
[17] S. D. Wicksell: The corpuscle problem II. Biometrika 18 (1926), 152–172.
Partner of
EuDML logo