Previous |  Up |  Next

Article

Title: Operators on $GMV$-algebras (English)
Author: Švrček, Filip
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 4
Year: 2004
Pages: 337-347
Summary lang: English
.
Category: math
.
Summary: Closure $GMV$-algebras are introduced as a commutative generalization of closure $MV$-algebras, which were studied as a natural generalization of topological Boolean algebras. (English)
Keyword: $MV$-algebra
Keyword: DRl-monoid
MSC: 06D35
MSC: 06F05
MSC: 06F99
idZBL: Zbl 1080.06502
idMR: MR2102608
DOI: 10.21136/MB.2004.134044
.
Date available: 2009-09-24T22:16:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134044
.
Reference: [1] Chang, C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [2] Chang, C. C.: A new proof of the completeness of the Łukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80. Zbl 0093.01104, MR 0122718
Reference: [3] Cignoli, R. O. L., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many -Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
Reference: [4] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, 2000. MR 1861369
Reference: [5] Georgescu, G., Iorgulescu, A.: Pseudo-$MV$-algebras.Multiple Valued Logic 6 (2001), 95–135. MR 1817439
Reference: [6] Kovář, T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis Palacký University, Olomouc, 1996.
Reference: [7] Rachůnek, J.: DRl-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365–372. MR 1624268, 10.1023/A:1022801907138
Reference: [8] Rachůnek, J.: $MV$-algebras are categorically equivalent to a class of DR$l_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [9] Rachůnek, J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255–273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509
Reference: [10] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras.Algebra Univers. 48 (2002), 151–169. Zbl 1058.06015, MR 1929902, 10.1007/PL00012447
Reference: [11] Rachůnek, J., Švrček, F.: $MV$-algebras with additive closure operators.Acta Univ. Palacki., Mathematica 39 (2000), 183–189. MR 1826361
Reference: [12] Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics.Panstw. Wyd. Nauk., Warszawa, 1963. MR 0163850
Reference: [13] Swamy, K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
.

Files

Files Size Format View
MathBohem_129-2004-4_1.pdf 319.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo