Previous |  Up |  Next

Article

Title: Bifurcations for a problem with jumping nonlinearities (English)
Author: Kárná, Lucie
Author: Kučera, Milan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 3
Year: 2002
Pages: 481-496
Summary lang: English
.
Category: math
.
Summary: A bifurcation problem for the equation \[ \Delta u+\lambda u-\alpha u^++\beta u^-+g(\lambda ,u)=0 \] in a bounded domain in $^N$ with mixed boundary conditions, given nonnegative functions $\alpha ,\beta \in L_\infty $ and a small perturbation $g$ is considered. The existence of a global bifurcation between two given simple eigenvalues $\lambda ^{(1)},\lambda ^{(2)}$ of the Laplacian is proved under some assumptions about the supports of the functions $\alpha ,\beta $. These assumptions are given by the character of the eigenfunctions of the Laplacian corresponding to $\lambda ^{(1)}, \lambda ^{(2)}$. (English)
Keyword: nonlinearizable elliptic equations
Keyword: jumping nonlinearities
Keyword: global bifurcation
Keyword: half-eigenvalue
MSC: 35B32
MSC: 35J25
MSC: 35J60
MSC: 35J65
idZBL: Zbl 1074.35510
idMR: MR1931332
DOI: 10.21136/MB.2002.134065
.
Date available: 2009-09-24T22:04:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134065
.
Reference: [1] M. Arias, J. Campos, M. Cuesta, J.-P. Gossez: Sur certains problemes elliptiques asymetriques avec poids indefinis.C. R. Acad. Sci., Paris, Ser. I, Math. 332 (2001), 215–218. MR 1817364, 10.1016/S0764-4442(00)01784-5
Reference: [2] H. Berestycki: On some nonlinear Sturm-Liouville problems.J. Differ. Equations 26 (1977), 375–390. Zbl 0331.34020, MR 0481230, 10.1016/0022-0396(77)90086-9
Reference: [3] P. J. Brown: A Prüfer approach to half-linear Sturm-Liouville problems.Proc. Edinburgh Math. Soc. 41 (1998), 573–583. MR 1697591
Reference: [4] E. N. Dancer: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations.Proc. Roy. Soc. Edinburgh, Sect. A 76 (1977), 283–300. MR 0499709
Reference: [5] J. Eisner, M. Kučera: Bifurcation of solutions to reaction-diffusion systems with jumping nonlinearities.Applied Nonlinear Analysis, A. Sequeira, H. Beirao da Veiga, J. H. Videman (eds.), Kluwer Academic/Plenum Publishers, 1999, pp. 79–96. MR 1727442
Reference: [6] J. Eisner, M. Kučera: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions.Fields Institute Comm. 25 (2000), 239–256. MR 1759546
Reference: [7] S. Fučík: Boundary value problems with jumping nonlinearities.Čas. Pěst. Mat. 101 (1976), 69–87. MR 0447688
Reference: [8] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer, Berlin, 1983. MR 0737190
Reference: [9] M. Kučera: Bifurcation points of variational inequalities.Czechoslovak Math. J. 32 (1982), 208–226. MR 0654057
Reference: [10] M. Kučera: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities.Czechoslovak Math. J. 47 (1997), 469–486. MR 1461426, 10.1023/A:1022411501260
Reference: [11] V. K. Le, K. Schmitt: Global Bifurcation in Variational Inequalities.Springer, New York, 1997. MR 1438548
Reference: [12] L. Nirenberg: Topics in Nonlinear Functional Analysis.Courant Institut, New York, 1974. Zbl 0286.47037, MR 0488102
Reference: [13] P. Quittner: Spectral analysis of variational inequalities.Comment. Math. Univ. Carolin. 27 (1986), 605–629. MR 0873631
Reference: [14] P. Quittner: Solvability and multiplicity results of variational inequalities.Comment. Math. Univ. Carolin. 30 (1989), 281–302. MR 1014128
Reference: [15] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems.J. Funct. Anal. 7 (1987), 487–513. MR 0301587
Reference: [16] B. P. Rynne: The Fučík spectrum of general Sturm-Liouville problems.J. Differ. Equations 161 (2000), 87–109. Zbl 0976.34024, MR 1740358, 10.1006/jdeq.1999.3661
.

Files

Files Size Format View
MathBohem_127-2002-3_13.pdf 411.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo