Title:
|
Bifurcations for a problem with jumping nonlinearities (English) |
Author:
|
Kárná, Lucie |
Author:
|
Kučera, Milan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
127 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
481-496 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A bifurcation problem for the equation \[ \Delta u+\lambda u-\alpha u^++\beta u^-+g(\lambda ,u)=0 \] in a bounded domain in $^N$ with mixed boundary conditions, given nonnegative functions $\alpha ,\beta \in L_\infty $ and a small perturbation $g$ is considered. The existence of a global bifurcation between two given simple eigenvalues $\lambda ^{(1)},\lambda ^{(2)}$ of the Laplacian is proved under some assumptions about the supports of the functions $\alpha ,\beta $. These assumptions are given by the character of the eigenfunctions of the Laplacian corresponding to $\lambda ^{(1)}, \lambda ^{(2)}$. (English) |
Keyword:
|
nonlinearizable elliptic equations |
Keyword:
|
jumping nonlinearities |
Keyword:
|
global bifurcation |
Keyword:
|
half-eigenvalue |
MSC:
|
35B32 |
MSC:
|
35J25 |
MSC:
|
35J60 |
MSC:
|
35J65 |
idZBL:
|
Zbl 1074.35510 |
idMR:
|
MR1931332 |
DOI:
|
10.21136/MB.2002.134065 |
. |
Date available:
|
2009-09-24T22:04:04Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134065 |
. |
Reference:
|
[1] M. Arias, J. Campos, M. Cuesta, J.-P. Gossez: Sur certains problemes elliptiques asymetriques avec poids indefinis.C. R. Acad. Sci., Paris, Ser. I, Math. 332 (2001), 215–218. MR 1817364, 10.1016/S0764-4442(00)01784-5 |
Reference:
|
[2] H. Berestycki: On some nonlinear Sturm-Liouville problems.J. Differ. Equations 26 (1977), 375–390. Zbl 0331.34020, MR 0481230, 10.1016/0022-0396(77)90086-9 |
Reference:
|
[3] P. J. Brown: A Prüfer approach to half-linear Sturm-Liouville problems.Proc. Edinburgh Math. Soc. 41 (1998), 573–583. MR 1697591 |
Reference:
|
[4] E. N. Dancer: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations.Proc. Roy. Soc. Edinburgh, Sect. A 76 (1977), 283–300. MR 0499709 |
Reference:
|
[5] J. Eisner, M. Kučera: Bifurcation of solutions to reaction-diffusion systems with jumping nonlinearities.Applied Nonlinear Analysis, A. Sequeira, H. Beirao da Veiga, J. H. Videman (eds.), Kluwer Academic/Plenum Publishers, 1999, pp. 79–96. MR 1727442 |
Reference:
|
[6] J. Eisner, M. Kučera: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions.Fields Institute Comm. 25 (2000), 239–256. MR 1759546 |
Reference:
|
[7] S. Fučík: Boundary value problems with jumping nonlinearities.Čas. Pěst. Mat. 101 (1976), 69–87. MR 0447688 |
Reference:
|
[8] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer, Berlin, 1983. MR 0737190 |
Reference:
|
[9] M. Kučera: Bifurcation points of variational inequalities.Czechoslovak Math. J. 32 (1982), 208–226. MR 0654057 |
Reference:
|
[10] M. Kučera: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities.Czechoslovak Math. J. 47 (1997), 469–486. MR 1461426, 10.1023/A:1022411501260 |
Reference:
|
[11] V. K. Le, K. Schmitt: Global Bifurcation in Variational Inequalities.Springer, New York, 1997. MR 1438548 |
Reference:
|
[12] L. Nirenberg: Topics in Nonlinear Functional Analysis.Courant Institut, New York, 1974. Zbl 0286.47037, MR 0488102 |
Reference:
|
[13] P. Quittner: Spectral analysis of variational inequalities.Comment. Math. Univ. Carolin. 27 (1986), 605–629. MR 0873631 |
Reference:
|
[14] P. Quittner: Solvability and multiplicity results of variational inequalities.Comment. Math. Univ. Carolin. 30 (1989), 281–302. MR 1014128 |
Reference:
|
[15] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems.J. Funct. Anal. 7 (1987), 487–513. MR 0301587 |
Reference:
|
[16] B. P. Rynne: The Fučík spectrum of general Sturm-Liouville problems.J. Differ. Equations 161 (2000), 87–109. Zbl 0976.34024, MR 1740358, 10.1006/jdeq.1999.3661 |
. |