Previous |  Up |  Next

Article

Title: On the linear capacity of algebraic cones (English)
Author: Skrzyński, Marcin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 3
Year: 2002
Pages: 453-462
Summary lang: English
.
Category: math
.
Summary: We define the linear capacity of an algebraic cone, give basic properties of the notion and new formulations of certain known results of the Matrix Theory. We derive in an explicit way the formula for the linear capacity of an irreducible component of the zero cone of a quadratic form over an algebraically closed field. We also give a formula for the linear capacity of the cone over the conjugacy class of a “generic” non-nilpotent matrix. (English)
Keyword: irreducible algebraic cone
Keyword: linear subspace
Keyword: conjugacy class of a matrix
Keyword: quadratic form
MSC: 15A03
MSC: 15A63
MSC: 15A99
idZBL: Zbl 1007.15002
idMR: MR1931329
DOI: 10.21136/MB.2002.134075
.
Date available: 2009-09-24T22:03:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134075
.
Reference: [1] R. A. Brualdi, K. L. Chavey: Linear spaces of Toeplitz and nilpotent matrices.J. Comb. Theory, Ser. A 63 (1993), 65–78. MR 1213131, 10.1016/0097-3165(93)90025-4
Reference: [2] H. Flanders: On spaces of linear transformations of bounded rank.J. London Math. Soc. 37 (1962), 10–16. MR 0136618
Reference: [3] F. R. Gantmacher: Théorie des matrices.Dunod, Paris, 1966. Zbl 0136.00410
Reference: [4] M. Gerstenhaber: On dominance and varieties of commuting matrices.Ann. Math. 73 (1961), 324–348. Zbl 0168.28201, MR 0132079, 10.2307/1970336
Reference: [5] M. Gerstenhaber: On nilalgebras and linear varieties of nilpotent matrices, IV.Ann. Math. 75 (1962), 382–418. Zbl 0112.26403, MR 0171815
Reference: [6] S. Lang: Algebra.W. A. Benjamin, New York, 1970. Zbl 0216.06001
Reference: [7] B. Mathes, M. Omladič, H. Radjavi: Linear spaces of nilpotent matrices.Linear Algebra Appl. 149 (1991), 215–225. MR 1092879, 10.1016/0024-3795(91)90335-T
Reference: [8] M. Omladič, P. Šemrl: Matrix spaces with bounded number of eigenvalues.Linear Algebra Appl. 249 (1996), 29–46. MR 1417407, 10.1016/0024-3795(95)00253-7
Reference: [9] R. Re: A note on linear subspaces of determinantal varieties.Le Matematiche 50 (1995), 173–178. Zbl 0861.14045, MR 1373578
Reference: [10] I. R. Shafarevich: Basic Algebraic Geometry.Springer, Berlin, 1977. Zbl 0362.14001, MR 0447223
Reference: [11] M. Skrzyński: Rank functions of matrices.Univ. Iagell. Acta Math. 37 (1999), 139–149.
Reference: [12] M. Skrzyński: On ${\mathcal GL}_n$-invariant cones of matrices with small stable ranks.Demonstratio Math. 33 (2000), 243–254. MR 1769417
.

Files

Files Size Format View
MathBohem_127-2002-3_10.pdf 343.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo