Previous |  Up |  Next

Article

Title: Eighty years of Jaroslav Kurzweil (English)
Author: Jarník, Jiří
Author: Schwabik, Štefan
Author: Tvrdý, Milan
Author: Vrkoč, Ivo
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 2
Year: 2006
Pages: 113-143
.
Category: history
.
MSC: 01A70
MSC: 26-03
MSC: 34-03
idZBL: Zbl 1106.01319
idMR: MR2242840
DOI: 10.21136/MB.2006.134088
.
Date available: 2009-09-24T22:24:57Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134088
.
Reference: [1] : A contribution to the metric theory of diophantine approximations.Czechoslovak Math. J. 1 (1951), 149–178. MR 0051273
Reference: [2] : On the uniqueness of solution of the modified Dirichlet problem.Čas. pěst. mat. 78 (1953), 213–214. (Czech) MR 0078466
Reference: [3] : A characterization of analytic operations in real Banach spaces.Studia Mathematica 14 (1953), 82–83. Zbl 0052.34602, MR 0062948, 10.4064/sm-14-1-82-83
Reference: [4] : On approximation in real Banach spaces.Studia Mathematica 14 (1954), 214–231. MR 0068732, 10.4064/sm-14-2-214-231
Reference: [5] : On the metric theory of inhomogeneous diophantine approximations.Studia Mathematica 15 (1955), 84–112. Zbl 0066.03702, MR 0073654, 10.4064/sm-15-1-84-112
Reference: [6] : On the theory of oscillations of an autonomous quasilinear system of ordinary differential equations.Czechoslovak Math. J. 5 (1955), 517–531. (Russian) MR 0080828
Reference: [7] : On periodic and almost periodic solutions of the system of ordinary differential equations.Czechoslovak Math. J. 5 (1955), 362–370. (Russian) MR 0076127
Reference: [8] : On the converse of the first Ljapunov theorem on stability of motion.Czechoslovak Math. J. 5 (1955), 382–398. (Russian) MR 0077747
Reference: [9] : On the converse of the second Ljapunov theorem on stability of motion.Czechoslovak Math. J. 6 (1956), 217–260, 455–485. MR 0085403
Reference: [10] : On the converse of Ljapunov stability theorem and Persidskij uniform stability theorem.Czechoslovak Math. J. 7 (1957), 254–272 (with I. Vrkoč). (Russian)
Reference: [11] : On approximation in real Banach spaces by analytic operations.Studia Mathematica 16 (1957), 124–129. Zbl 0080.32602, MR 0093697, 10.4064/sm-16-2-124-129
Reference: [12] : On continuous dependence of solutions of differential equations on a parameter.Czechoslovak Math. J. 7 (1957), 568–583 (with Z. Vorel). (Russian) MR 0111874
Reference: [13] : Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J. 7 (1957), 418–449. Zbl 0090.30002, MR 0111875
Reference: [14] : Generalized ordinary differential equations.Czechoslovak Math. J. 8 (1958), 360–388. Zbl 0102.07003, MR 0111878
Reference: [15] : Unicity of solutions of generalized differential equations.Czechoslovak Math. J. 8 (1958), 502–509. Zbl 0094.05901, MR 0111880
Reference: [16] : On Dirac function in nonlinear differential equations.Aplikace matematiky 3 (1958), 348–359 (with V. Doležal, Z. Vorel). (Czech) MR 0111879
Reference: [17] : On generalized ordinary differential equations possessing discontinuous solutions.Prikl. mat. i mech. 22 (1958), 27–45. (Russian) Zbl 0102.07003, MR 0111876
Reference: [18] : On integration by parts.Czechoslovak Math. J. 8 (1958), 356–359. Zbl 0094.03505, MR 0111877
Reference: [19] : On some properties of linear differential equations.Aplikace matematiky 4 (1959), 163–176 (with V. Doležal). (Czech)
Reference: [20] : Addition to my paper “Generalized ordinary differential equations and continuous dependence on a parameter”.Czechoslovak Math. J. 9 (1959), 564–573. Zbl 0094.05902, MR 0111882
Reference: [21] : Linear differential equations with distributions as coefficients.Bull. de l’Academie Polonaise des Sciences, Ser. des sci. math., astr. et phys. VII (1959), 557–560. Zbl 0117.34401, MR 0111887
Reference: [22] : Note on oscillatory solutions of the equation $y^{\prime \prime } +f(x) y^{2n-1} = 0$.Čas. pěst. mat. 85 (1960), 357–358. (Russian) MR 0126025
Reference: [23] : On linear control systems.Bul. Inst. Politeh. Iasi, N.Ser. 6(10) (1960), 13–19 (with Z. Vorel). Zbl 0106.05901, MR 0137909
Reference: [24] : On continuous dependence on a parameter Contributions to the theory of nonlinear oscillations 5.Princeton (1960), 25–35 (with J. Jarník). MR 0132232
Reference: [25] : On spectral decomposition of Hermitian operator.Čas. pěst. mat. 86 (1961), 90–92. (Czech) MR 0140942
Reference: [26] : On analytic construction of regulators.Avtomatika i telemechanika 26 (1961), 688–695. (Russian)
Reference: [27] : On the averaging principle in some special cases of boundary value problems for partial differential equations.Čas. pěst. mat. 88 (1963), 444–456. (Russian) MR 0181843
Reference: [28] : The averaging principle and its applications in partial differential equations.Nonlinear Vibration Problems (1963), 142–148. Zbl 0145.12101, MR 0186949
Reference: [29] : Problems which lead to a generalization of the concept of an ordinary nonlinear differential equation.Proc. of Conf. Equadiff, Academia, Praha (1963), 65–76. Zbl 0151.12501, MR 0177173
Reference: [30] : On a system of the third order describing the motion of a material point accounting for the inner friction.Trudy Mezhdunarod. simp. po nelinejnym kolebanijam. Kiev (1963), 220–222. (Russian)
Reference: [31] : To the linear theory of optimal control.Čas. pěst. mat. 89 (1964), 90–101. (Russian) MR 0182496
Reference: [32] : On an inequality for eigenvalues of integral equations.Čas. pěst. mat. 89 (1964), 205–210. (Russian) MR 0182848
Reference: [33] : Über die asymptotische Methode in der Theorie der nichtlinearen Differentialgleichungen.III. Konferenz über nichtlineare Schwingungen, Abhandlungen der Deutschen Akad. der Wiss., Klasse Math., Phys., Astr. (1965), 1–9. Zbl 0178.43903, MR 0197899
Reference: [34] : Exponentially stable integral manifolds, averaging principle and continuous dependence on a parameter.Czechoslovak Math. J. 16 (1966), 380–423, 463–492. Zbl 0186.47701, MR 0206440
Reference: [35] : Invariant manifolds for differential systems.Atti VIII Congr. UMI, Trieste (1967), 291–292.
Reference: [36] : Van der Pol perturbation of the equation for a vibrating string.Czechoslovak Math. J. 17 (1967), 558–608. Zbl 0164.41003, MR 0219863
Reference: [37] : Invariant manifolds for flows.Acta Fac. Rerum Nat. Univ. Comenianae, Proc. Equadiff Bratislava, 1966, Mathematica 17 (1967), 89–92. Zbl 0194.12401
Reference: [38] : Invariant manifolds of differential systems.Proc. of Fourth Conf. on Nonlinear Oscillations, Academia, Praha (1968), 41–49. MR 0344603
Reference: [39] : Invariant manifolds of a class of linear functional differential equations.Revue Roum. Math. Pures et Appl. 13 (1968), 113–1120. Zbl 0172.12201, MR 0244581
Reference: [40] : A theory of invariant manifolds for flows.Revue Roum. Math. Pures et Appl. 13 (1968), 1079–1097 (with A. Halanay). Zbl 0169.11403, MR 0244580
Reference: [41] : Invariant sets of differential systems.Differencialnye uravnenija 4 (1968), 785–797. (Russian) Zbl 0185.17701, MR 0232044
Reference: [42] : Invariant manifolds for flows.Differential Equations and Dyn. Systems. Proc. Int. Symp. Mayaguez 1967, Academic Press, 431–468. Zbl 0691.58034, MR 0218698
Reference: [43] : Invariant manifolds of differential systems.Z. Angew. Math. Mech. 49 (1969), 11–14. Zbl 0198.43001, 10.1002/zamm.19690490103
Reference: [44] : On invariant sets and invariant manifolds of differential systems.J. Differ. Equations 6 (1969), 247–263 (with J. Jarník). Zbl 0176.39101, MR 0249729
Reference: [45] : Global solutions of functional differential equations.Seminar on Diff. Equations and Dynamical Systems 11, Lecture Notes in Math. 144, Springer (1970), 134–139. Zbl 0224.34054, MR 0430469
Reference: [46] : Uniqueness and differentiability of solutions of ordinary differential equations and total differential equations.Math. Inst. Univ. of Warwick, preprint (1969), 1–26.
Reference: [47] : Global solutions of functional differential equations.Univ. of Maryland, The Inst. for Fluid Dynamics and Applied Math., Technical Note BN629, 1969. Zbl 0224.34054
Reference: [48] : Small delays don’t matter.Math. Inst. Univ. of Warwick, preprint (1969), 1–17.
Reference: [49] : Invariant manifolds I.CMUC 11 (1970), 309–336. Zbl 0197.47702, MR 0296963
Reference: [50] : Existence of global solutions of delayed differential equations on compact manifolds.Rend. Ist. di Matem. Univ. Trieste, vol. II, fasc. II (1970), 106–108. Zbl 0206.38901, MR 0279405
Reference: [51] : On solutions of nonautonomous linear delayed differential equations which are defined and bounded for $t\rightarrow -\infty $.CMUC 12 (1971), 69–72. MR 0282023
Reference: [52] : On solutions of nonautonomous linear delayed differential equations which are exponentially bounded for $t\rightarrow -\infty $.Čas. pěst. mat. 96 (1971), 229–238. MR 0298164
Reference: [53] : Solutions of linear nonautonomous functional differential equations which are exponentially bounded for $t\rightarrow -\infty $.J. Differ. Equations 11 (1972), 376–384. MR 0310396, 10.1016/0022-0396(72)90052-6
Reference: [54] : On a system of operator equations.J. Differ. Equations 11 (1972), 364–375. Zbl 0211.17701, 10.1016/0022-0396(72)90051-4
Reference: [55] : On submultiplicative nonnegative functionals on linear maps of linear finitedimensional normed spaces.Czechoslovak Math. J. 22 (1972), 454–461. MR 0348459
Reference: [56] : On the maximum value of a class of determinants.Matem. časopis 23 (1973), 40–42. Zbl 0254.15005, MR 0323801
Reference: [57] : On Fubini theorem for general Perron integral.Czechoslovak Math. J. 29 (1973), 286–297. Zbl 0267.26006, MR 0333086
Reference: [58] : On multiplication of Perron-integrable functions.Czechoslovak Math. J. 23 (1973), 542–566. Zbl 0269.26007, MR 0335705
Reference: [59] : Ryabov’s special solutions of functional differential equations.Boll. U.M.I. 11. Zbl 0362.34055
Reference: [60] : On Ryabov’s Special solutions of functional differential equations.Colloquia Math. Soc. J. Bolyai I5, Differential Equations, Keszthely, Hungary (1975), 303–307 (with J. Jarník).
Reference: [61] : Right-hand sides of differential inclusions which cannot be reduced.Problemy asymptotičeskoj teorii nelinejnych kolebanij, Naukova Dumka, Kiev, 1977, 122–132 (with J. Jarník). Zbl 0414.34014, MR 0592613
Reference: [62] : Reducing differential inclusions.Abh. Akad. Wiss. DDR, Abt. Mathematik, Naturwissenschaften, Technik No. 3 (1977), 477–479 (with J. Jarník). Zbl 0359.34002, MR 0508301
Reference: [63] : On differential relations and on Filippov’s concept of differential equations.Proc. Uppsala 1977 Int. Conf. on Diff. Eq., Uppsala (1977), 109–113. Zbl 0404.34012, MR 0499400
Reference: [64] : On conditions on right hand sides of differential relations.Čas. pěst. mat. 102 (1977), 334–349 (with J. Jarník). Zbl 0369.34002, MR 0466702
Reference: [65] : Extension of a Scorza-Dragoni theorem to differential relations and functional differential relations.Commentat. Math. Spec. Vol. I, dedic. L. Orlicz (1978), 147–158 (with J. Jarník). Zbl 0383.34010, MR 0504159
Reference: [66] : On differential relations.Proc. 8. Int. Conf. on Nonlin. Osc., Praha (1978), 39–49.
Reference: [67] : Kneser’s theorem for multivalued differential delay equations.Čas. pěst. mat. 104 (1979), 1–8 (with P. Krbec). Zbl 0405.34059, MR 0523570
Reference: [68] : Sets of solutions of differential relations.Čas. pěst. mat. 106 (1981), 554–568 (with J. Jarník). Zbl 0487.34011, MR 0631602
Reference: [69] : Nonautonomous Differential relations and their connections with differential equations the right hand side of which is discontinuous with respect to space variables.Proc. of the Second Conference Rousse’81, Rousse, 1982. Zbl 0547.34012
Reference: [70] : Integral of multivalued mappings and its connection with differential relations.Čas. pěst. mat. 108 (1983), 8–28 (with J. Jarník). Zbl 0536.28006, MR 0694137
Reference: [71] : On a problem in the theory of linear differential equations with quasi-periodic coefficients.Proc. of the 9th Int. Conf. on Nonlin. Osc., Kiev 1981, Vol. 1, Kiev (1984), 214–217 (with A. Vencovská).
Reference: [72] : On linear differential equations with almost periodic coefficients and the property that the unit sphere is invariant.Proc. Int. Conf. Equadiff 82, Lecture Notes in Math. 1017, Springer, 1983, 364–368 (with A. Vencovská). Zbl 0555.34038
Reference: [73] : On Mawhin’s approach to multiple nonabsolutely convergent integrals.Čas. pěst. mat. 108 (1983), 356–380 (with J. Jarník, Š. Schwabik). MR 0727536
Reference: [74] : The integral as a limit of integral sums.Jahrbuch Ueberblicke Mathematik 1984. Bibliographisches Inst. AG (1984), 105–136. Zbl 0554.26007
Reference: [75] : A non-absolutely convergent integral which admits $C^1$-transformations.Čas. pěst. mat. 109 (1984), 157–167 (with J. Jarník). MR 0744873
Reference: [76] : A non-absolutely convergent integral which admits transformation and can be used for integration on manifold.Czechoslovak Math. J. 35 (1985), 116–139 (with J. Jarník). MR 0779340
Reference: [77] : On regularization of right hand sides of differential relations.Proc. Royal Soc. Edinburgh 97A (1984), 151–159 (with J. Jarník). Zbl 0561.34044, MR 0751186
Reference: [78] : A new and more powerful concept of the $\mathop {\text{PU}}$-integral.Czechoslovak Math. J. 38 (1988), 8–48 (with J. Jarník). MR 0925939
Reference: [79] : Perron integral, Perron product integral and ordinary linear differential equations.Equadiff 6., Lecture Notes in Mathematics 1192 (eds. J. Vosmanský, M. Zlámal), Berlin, Springer, 1986, pp. 149–154 (with J. Jarník). Zbl 0619.26006, MR 0877117
Reference: [80] : On some extensions of the Perron integral on one dimensional intervals. An approach by integral sums fulfilling a symmetry condition.Functiones et Approximatio Commentarii Mathematici 17 (1987), 49–55 (with J. Jarník). Zbl 0622.26007, MR 0893741
Reference: [81] : Limit processes in ordinary differential equations.Zeitschrift für Angewandte Mathematik und Physik 38 (1987), 241–256 (with J. Jarník). Zbl 0616.34004, MR 0885687
Reference: [82] : A general form of the product integral and linear ordinary differential equations.Czechoslovak Math. J. 37 (1987), 642–659 (with J. Jarník). Zbl 0642.26004, MR 0913996
Reference: [83] : Linear differential equations with quasiperiodic coefficients.Czechoslovak Math. J. 37 (1987), 424–470 (with A. Vencovská). Zbl 0637.34003, MR 0904770
Reference: [84] : Iterated Lie brackets in limit processes in ordinary differential equations.Resultate der Mathematik 14 (1988), 125–137 (with J. Jarník). Zbl 0663.34043, MR 0956009
Reference: [85] : A convergence effect in ordinary differential equations.Asymptotic Methods of Mathematical Physics. (ed. V. S. Korolyuk) Naukova Dumka, Kiev (1988), 134–144 (with J. Jarník). MR 0977517
Reference: [86] : Structural stability of linear discrete systems via the exponential dichotomy.Czechoslovak Math. J. 38 (1988), 280–284 (with G. Papaschinopoulos). Zbl 0661.93060, MR 0946297
Reference: [87] : The $\mathop {\text{PU}}$-integral and its properties.Real Analysis Exchange 14 (1988–89), 34–43 (with J. Jarník).
Reference: [88] : Ordinary differential equations the solutions of which are $ACG_*$-functions.Archivum Mathematicum 26 (1990), 129–136 (with Š. Schwabik).
Reference: [89] : On a generalization of the Perron integral on one-dimensional intervals.Annales Polonici Mathematici (Zdzislaw Opial in memoriam) 51 (1990), 205–218 (with J. Jarník). Zbl 0733.26005, MR 1093991
Reference: [90] : The $\mathop {\text{PU}}$-integral: its definitions and some basic properties.New Integrals, Proceedings of the Henstock Conference held in Coleraine, Northern Ireland, August 9–12, 1988 (eds. P. S. Bullen, P. Y. Lee, J. Mawhin, P. Muldowney, W. F. Pfeffer) Lecture Notes in Math. 1419, Springer, Berlin (1990), 66–81 (with J. Jarník). MR 1051921
Reference: [91] : Topological equivalence and structural stability for linear difference equations.J. Differ. Equations 89 (1991), 89–94 (with G. Papaschinopoulos). Zbl 0753.34040, MR 1088336
Reference: [92] : An integral defined by approximating $BV$ partitions of unity.Czechoslovak Math. J. 41 (1991), 695–712 (with J. Mawhin and W. Pfeffer). Zbl 0763.26007, MR 1134958
Reference: [93] : Equiintegrability and controlled convergence of Perron-type integrable functions.Real Analysis Exchange 17 (1991–92), 110-139 (with J. Jarník). MR 1147361
Reference: [94] : Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Results in Mathematics 21 (1992), 138–151 (with J. Jarník). Zbl 0764.28005, MR 1146639
Reference: [95] : Equivalent definitions of regular generalized Perron integral.Czechoslovak Math. J. 42 (1992), 365–378 (with J. Jarník). Zbl 0782.26004, MR 1179506
Reference: [96] : Generalized multidimensional Perron integral involving a new regularity condition.Results in Mathematics 23 (1993), 363–373 (with J. Jarník). Zbl 0782.26003, MR 1215221
Reference: [97] : Pfeffer integrability does not imply $M_1$-integrability.Czechoslovak Math. J. 44 (1994), 47–56 (with J. Jarník). MR 1257935
Reference: [98] : Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (1995), 79–106 (with J. Jarník). Zbl 0832.26009, MR 1314532
Reference: [99] : Nonabsolutely convergent integrals via integral sums in $\mathbb{R}^n$.Tatra Mountains Math. Publications 8 (1996), 191–201. MR 1475281
Reference: [100] : Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence.Czechoslovak Math. J. 46 121 (1996), 1–20 (with J. Jarník). Zbl 0902.26007, MR 1371683
Reference: [101] : Another Perron type integration in $n$-dimensions as an extension of integration of stepfunctions.Czechoslovak Math. J. 47 (1997), 557–575 (with J. Jarník). Zbl 0902.26006, MR 1461432
Reference: [102] : A convergence theorem for Henstock-Kurzweil integral and its relation to topology.Bull. Acad. Royal de Belgique, Classe de Sci. 7–12 (1997), 217–230 (with J. Jarník). MR 1709540
Reference: [103] : Convergence cannot be replaced by a locally convex topology.Bulletin de la Classe des Sciences. Acad. Royale Belgique 9 (1998), 331–347 (with J. Jarník). MR 1728847
Reference: [104] : The set of primitives of Henstock-Kurzweil integrable functions as a convergence vector space.Tatra Mount. Math. Publ. 14 (1998), 29–37. MR 1651192
Reference: [105] : A nonexistence result for the Kurzweil integral.Math. Bohem. 127 (2002), 571–580 (with P. Krejčí). Zbl 1005.26005, MR 1942642
Reference: [106] : The revival of the Riemannian approach to integration.Banach Center Publications, Vol. 64 (Orlicz Centenary Volume), Warszawa (2004), 147–158. Zbl 1052.26008, MR 2099466
Reference: [107] : McShane equi-integrability and Vitali’s convergence theorem.Math. Bohem. 129 (2004), 141–157 (with Š. Schwabik). Zbl 1051.26012, MR 2073511
Reference: [108] : On McShane integrability of Banach space-valued functions.Real Analysis Exchange 29 (2003/2004), 763–780 (with Š. Schwabik). MR 2083811
Reference: [B1] : Integral Equations.Lecture Notes, SPN, Praha, 1963. (Czech) Zbl 0219.65099
Reference: [B2] : Differential Equations (Ordinary differential equations in the real domain).Lecture Notes SPN, Praha, 1968. (Czech)
Reference: [B3] : Ordinary Differential Equations in the Real Domain.Lecture Notes SPN, Praha, 1970. (Czech)
Reference: [B4] : Ordinary Differential Equations.TKI, SNTL Praha, 1978. (Czech) Zbl 0956.34503, MR 0617010
Reference: [B5] : Nichtabsolut konvergente Integrale.Teubner Texte zur Mathematik, Bd. 26. Teubner, Leipzig, 1980. Zbl 0441.28001, MR 0597703
Reference: [B6] : Appendix A: The Perron-Ward Integral and Related Concepts.In the monograph K. Jacobs: Measure and Integral, Academic Press, 1978, pp. 515–533.
Reference: [B7] : Ordinary Differential Equations.SNTL Praha-Elsevier Publ., Amsterdam, 1986. Zbl 0979.34508, MR 0929466
Reference: [B8] : Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces.World Scientific, Singapore, 2000. Zbl 0954.28001, MR 1763305
Reference: [B9] : Integration between the Lebesgue Integral and the Henstock-Kurzweil Integral. Its Relation to Local Convex Vector Spaces.World Scientific, Singapore, 2002. Zbl 1018.26005, MR 1908744
.

Files

Files Size Format View
MathBohem_131-2006-2_1.pdf 460.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo