Previous |  Up |  Next

Article

Title: A remark on branch weights in countable trees (English)
Author: Zelinka, Bohdan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 1
Year: 2004
Pages: 29-31
Summary lang: English
.
Category: math
.
Summary: Let $T$ be a tree, let $u$ be its vertex. The branch weight $b(u)$ of $u$ is the maximum number of vertices of a branch of $T$ at $u$. The set of vertices $u$ of $T$ in which $b(u)$ attains its minimum is the branch weight centroid $B(T)$ of $T$. For finite trees the present author proved that $B(T)$ coincides with the median of $T$, therefore it consists of one vertex or of two adjacent vertices. In this paper we show that for infinite countable trees the situation is quite different. (English)
Keyword: branch weight
Keyword: branch weight centroid
Keyword: tree
Keyword: path
Keyword: degree of a vertex
MSC: 05C05
idZBL: Zbl 1050.05028
idMR: MR2048784
DOI: 10.21136/MB.2004.134108
.
Date available: 2009-09-24T22:12:14Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134108
.
Reference: [1] O. Ore: Theory of Graphs.AMS Colloq. Publ., Providence, 1963. MR 0150753
Reference: [2] P. J. Slater: Accretion centers: A generalization of branch weight centroids.Discr. Appl. Math. 3 (1981), 187–192. Zbl 0467.05045, MR 0619605, 10.1016/0166-218X(81)90015-9
Reference: [3] Z. Win, Y. Myint: The cendian of a tree.Southeast Asian Bull. Math. 25 (2002), 757–767. MR 1934672, 10.1007/s100120200016
Reference: [4] B. Zelinka: Medians and peripherians of trees.Arch. Math. Brno 4 (1968), 87–95. Zbl 0206.26105, MR 0269541
.

Files

Files Size Format View
MathBohem_129-2004-1_3.pdf 239.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo