Title:
|
Domination numbers on the Boolean function graph of a graph (English) |
Author:
|
Janakiraman, T. N. |
Author:
|
Muthammai, S. |
Author:
|
Bhanumathi, M. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
130 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
135-151 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For any graph $G$, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of $G$ respectively. The Boolean function graph $B(G, L(G), \mathop {\mathrm NINC})$ of $G$ is a graph with vertex set $V(G)\cup E(G)$ and two vertices in $B(G, L(G), \mathop {\mathrm NINC})$ are adjacent if and only if they correspond to two adjacent vertices of $G$, two adjacent edges of $G$ or to a vertex and an edge not incident to it in $G$. For brevity, this graph is denoted by $B_{1}(G)$. In this paper, we determine domination number, independent, connected, total, cycle, point-set, restrained, split and non-split domination numbers of $B_{1}(G)$ and obtain bounds for the above numbers. (English) |
Keyword:
|
domination number |
Keyword:
|
point-set domination number |
Keyword:
|
split domination number |
Keyword:
|
Boolean function graph |
MSC:
|
05C15 |
MSC:
|
05C45 |
MSC:
|
05C69 |
MSC:
|
06E30 |
idZBL:
|
Zbl 1110.05078 |
idMR:
|
MR2148647 |
DOI:
|
10.21136/MB.2005.134129 |
. |
Date available:
|
2009-09-24T22:19:18Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134129 |
. |
Reference:
|
[1] J. Akiyama, T. Hamada, I. Yoshimura: On characterizations of the middle graphs.TRU. Math. 11 (1975), 35–39. MR 0414436 |
Reference:
|
[2] R. B. Allan, R. Laskar: On domination and independent domination numbers of a graph.Discrete Math. 23 (1978), 73–76. MR 0523402, 10.1016/0012-365X(78)90105-X |
Reference:
|
[3] M. Behzad: A criterion for the planarity of the total graph of a graph.Proc. Camb. Philos. Soc. 63 (1967), 679–681. Zbl 0158.20703, MR 0211896, 10.1017/S0305004100041657 |
Reference:
|
[4] S. B. Chikkodimath, E. Sampathkumar: Semi total graphs II.Graph Theory Research Report, Karnatak University 2 (1973), 5–9. |
Reference:
|
[5] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi: Total domination in graphs.Networks 10 (1980), 211–219. MR 0584887, 10.1002/net.3230100304 |
Reference:
|
[6] E. J. Cockayne, B. L. Hartnell, S. T. Hedetniemi, R. Laskar: Perfect domination in graphs.J. Comb. Inf. Syst. Sci. 18 (1993), 136–148. MR 1317698 |
Reference:
|
[7] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. Laskar, L. R. Markus: Restrained domination in graph.Discrete Math. 203 (1999), 61–69. MR 1696234, 10.1016/S0012-365X(99)00016-3 |
Reference:
|
[8] T. Hamada, I. Yoshimura: Traversability and connectivity of the middle graph of a graph.Discrete Math. 14 (1976), 247–256. MR 0414435, 10.1016/0012-365X(76)90037-6 |
Reference:
|
[9] F. Harary: Graph Theory.Addison-Wesley, Reading, Mass., 1969. Zbl 0196.27202, MR 0256911 |
Reference:
|
[10] T. N. Janakiraman, S. Muthammai, M. Bhanumathi: On the Boolean function graph of a graph and on its complement.Math. Bohem. 130 (2005), 113–134. MR 2148646 |
Reference:
|
[11] V. R. Kulli, B. Janakiram: The total global domination number of a graph.Indian J. Pure Appl. Math. 27 (1996), 537–542. MR 1390876 |
Reference:
|
[12] O. Ore: Theory of Graphs. Amer. Math. Soc. Colloq. Publ. 38, Providence, AMS, 1962.. |
Reference:
|
[13] E. Sampathkumar, L. Pushpa Latha: Point-set domination number of a graph.Indian J. Pure Appl. Math. 24 (1993), 225–229. MR 1218532 |
Reference:
|
[14] E. Sampathkumar, H. B. Walikar: The connected domination number of a graph.J. Math. Phys. Sci. 13 (1979), 607–613. MR 0575817 |
Reference:
|
[15] D. V. S. Sastry, B. Syam Prasad Raju: Graph equations for line graphs, total graphs, middle graphs and quasi-total graphs.Discrete Math. 48 (1984), 113–119. MR 0732207, 10.1016/0012-365X(84)90137-7 |
Reference:
|
[16] H. Whitney: Congruent graphs and the connectivity of graphs.Amer. J. Math. 54 (1932), 150–168. Zbl 0003.32804, MR 1506881, 10.2307/2371086 |
. |