Previous |  Up |  Next

Article

Title: The Weierstrass theorem on polynomial approximation (English)
Author: Výborný, Rudolf
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 2
Year: 2005
Pages: 161-166
Summary lang: English
.
Category: math
.
Summary: In the paper a simple proof of the Weierstrass approximation theorem on a function continuous on a compact interval of the real line is given. The proof is elementary in the sense that it does not use uniform continuity. (English)
Keyword: approximation by polynomials
MSC: 41-01
MSC: 41A10
idZBL: Zbl 1110.41003
idMR: MR2148649
DOI: 10.21136/MB.2005.134132
.
Date available: 2009-09-24T22:19:36Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134132
.
Reference: [1] B. Brosowski, F. Deutsch: An elementary proof of the Stone-Weierstrass theorem.Proc. Am. Math. Soc. 81 (1981), 89–92. MR 0589143, 10.1090/S0002-9939-1981-0589143-8
Reference: [2] D. Jackson: A proof of Weierstrass’s theorem.Am. Math. Mon. 41 (1934), 309–312. Zbl 0009.15802, MR 1523090, 10.2307/2300993
Reference: [3] H. Kuhn: Ein elementarer Beweis des Weierstrasschen Approximationsatzes.Arch. Math. 15 (1964), 316–317. MR 0173738, 10.1007/BF01589203
Reference: [4] E. Landau: Über die Approximationen einer stetigen Funktion durch eine ganze rationale Funktion.Palermo Rend. 25 (1908), 337–345.
Reference: [5] I. P. Natanson: Theory of Functions of a Real Variable (Engl. transl.) Vol 1.Ungar, New York, 1974. MR 0354979
Reference: [6] M. H. Stone: A generalized Weierstrass approximation theorem.Stud. Math. 1 (1962), 30–87. Zbl 0147.11702
Reference: [7] Béla Sz.-Nagy: Introduction to Real Functions and Orthogonal Expansions.Akadémiai Kiadó, Budapest, 1964. MR 0181711
Reference: [8] K. Weierstrass: Mathematische Werke.Preussische Akademie der Wissenschaften, 1903.
.

Files

Files Size Format View
MathBohem_130-2005-2_4.pdf 568.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo