[2] A. Bigard: 
Sur les images homomorphes d’un demi-groupe ordonné. C. R. Acad. Sci. Paris 260 (1965), 5987–5988. 
MR 0178080 | 
Zbl 0132.01202[3] T. Blyth: 
On the greatest isotone homomorphic group image of an inverse semigroup. J. London Math. Soc. 1 (1969), 260–264. 
MR 0245705 | 
Zbl 0181.32001[4] T. Blyth, M. Janowitz: 
Residuation Theory. Pergamon Press, Oxford, U.K., 1972. 
MR 0396359[5] A. Clifford, G. Preston: 
The Algebraic Theory of Semigroups, Vols. I, II. Amer. Math. Soc. Surveys 7, Providence, USA, 1961/67. 
MR 0132791[6] M. Dubreil-Jacotin: 
Sur les images homomorphes d’un demi-groupe ordonné. Bull. Soc. Math. France 92 (1964), 101–115. 
MR 0168675 | 
Zbl 0129.01502[7] A. Fidalgo Maia, H. Mitsch: 
Constructions of trivially ordered semigroups. Pure Math. Appl. 13 (2002), 359–371. 
MR 1980722[12] R. McFadden, L. O’Carroll: 
$F$-inverse semigroups. Proc. Lond. Math. Soc., III. Ser. 22 (1971), 652–666. 
MR 0292978[17] J. Querré: 
Plus grand groupe image homomorphe et isotone d’un monoide ordonné. Acta Math. Acad. Sci. Hung. 19 (1968), 129–146. 
DOI 10.1007/BF01894689 | 
MR 0227299[18] S. Reither: Die natürliche Ordnung auf Halbgruppen. University of Vienna, PhD-Thesis (1994).
[19] V. Wagner: Generalized grouds and generalized groups with the transitive compatibility relation. Uchenye Zapiski, Mechano-Math. Series, Saratov State University 70 (1961), 25–39.