Previous |  Up |  Next

Article

Title: Periodic singular problem with quasilinear differential operator (English)
Author: Rachůnková, Irena
Author: Tvrdý, Milan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 3
Year: 2006
Pages: 321-336
Summary lang: English
.
Category: math
.
Summary: We study the singular periodic boundary value problem of the form \[ \left(\phi (u^{\prime })\right)^{\prime }+h(u)u^{\prime }=g(u)+e(t),\quad u(0)=u(T),\quad u^{\prime }(0)=u^{\prime }(T), \] where $\phi \:\mathbb{R}\rightarrow \mathbb{R}$ is an increasing and odd homeomorphism such that $\phi (\mathbb{R})=\mathbb{R},$ $h\in C[0,\infty ),$ $e\in L_1J$ and $g\in C(0,\infty )$ can have a space singularity at $x=0,$ i.e. $\limsup _{x\rightarrow 0+}|g(x)|=\infty $ may hold. We prove new existence results both for the case of an attractive singularity, when $\liminf _{x\rightarrow 0+}g(x)=-\infty ,$ and for the case of a strong repulsive singularity, when $\lim _{x\rightarrow 0+}\int _x^1g(\xi )\hspace{0.56905pt}\text{d}\xi =\infty .$ In the latter case we assume that $\phi (y)=\phi _p(y)=|y|^{p-2}y,$ $p>1,$ is the well-known $p$-Laplacian. Our results extend and complete those obtained recently by Jebelean and Mawhin and by Liu Bing. (English)
Keyword: singular periodic boundary value problem
Keyword: positive solution
Keyword: $\phi $-Laplacian
Keyword: $p$-Laplacian
Keyword: attractive singularity
Keyword: repulsive singularity
Keyword: strong singularity
Keyword: lower function
Keyword: upper function
MSC: 34B15
MSC: 34B16
MSC: 34B18
MSC: 34C25
idZBL: Zbl 1114.34018
idMR: MR2248598
DOI: 10.21136/MB.2006.134137
.
Date available: 2009-09-24T22:26:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134137
.
Reference: [1] D. Bonheure, C. De Coster: Forced singular oscillators and the method of lower and upper functions.Topol. Methods Nonlinear Anal. 22 (2003), 297–317. MR 2036378, 10.12775/TMNA.2003.041
Reference: [2] D. Bonheure, C. Fabry, D. Smets: Periodic solutions of forced isochronous oscillators.Discrete Contin. Dyn. Syst. 8 (2002), 907–930. MR 1920651, 10.3934/dcds.2002.8.907
Reference: [3] A. Cabada, R. Pouso: Existence result for the problem $\left(\phi (u^{\prime })\right)^{\prime }=f(t,u,u^{\prime })$ with periodic and Neumann boundary conditions.Nonlinear Anal., Theory Methods Appl. 30 (1997), 1733–1742. MR 1490088
Reference: [4] M. del Pino, R. Manásevich, A. Montero: $T$-periodic solutions for some second order differential equations with singularities.Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 231–243. MR 1159183
Reference: [5] M. del Pino, R. Manásevich, A. Murúa: Existence and multiplicity of solutions with prescribed period for a second order quasilinear O.D.E.Nonlinear Anal., Theory Methods Appl. 18 (1992), 79–92. MR 1138643, 10.1016/0362-546X(92)90048-J
Reference: [6] L. Derwidué: Systèmes différentiels non linéaires ayant des solutions périodiques.Acad. R. Belgique, Bull. Cl. Sci. 49 (1963), 11–32.
Reference: [7] P. Drábek: Solvability and Bifurcation of Nonlinear Equations.Research Notes in Math. Vol. 264, Pitman, Boston, 1992. MR 1175397
Reference: [8] R. Faure: Solutions périodiques d’equations différentielles et mèthode de Leray-Schauder (Cas des vibrations forceés).Ann. Inst. Fourier (Grenoble) 14 (1964), 195–204. MR 0166444, 10.5802/aif.170
Reference: [9] A. Fonda: Periodic solution of scalar second order differential equations with a singularity.Acad R. Belgique, Mém. Cl. Sci. 4 (1993), 1–39. MR 1259048
Reference: [10] N. Forbat, A. Huaux: Détermination approachée et stabilité locale de la solution périodique d’une equation différentielle non linéaire.Mém. Public. Soc. Sci. Arts Letters Hainaut 76 (1962), 3–13. MR 0149009
Reference: [11] W. G. Ge, J. Mawhin: Positive solutions to boundary value problems for second order ordinary differential equations with singular nonlinearities.Result. Math. 34 (1998), 108–119. MR 1635588, 10.1007/BF03322042
Reference: [12] P. Habets, L. Sanchez: Periodic solutions of some Liénard equations with singularities.Proc. Amer. Math. Soc. 109 (1990), 1035–1044. MR 1009991
Reference: [13] A. Huaux: Sur l’existence d’une solution périodique de l’equation différentielle non linéaire $u^{\prime \prime }+0.2\,u^{\prime }+u/(1-u)=0.5\cos \omega t$.Acad. R. Belgique, Bull. Cl. Sci. 48 (1962), 494–504. MR 0142838
Reference: [14] P. Jebelean, J. Mawhin: Periodic solutions of singular nonlinear perturbations of the ordinary $p$-Laplacian.Adv. Nonlinear Stud. 2 (2002), 299–312. MR 1918967
Reference: [15] P. Jebelean, J. Mawhin: Periodic solutions of forced dissipative $p$-Liénard equations with singularities.Vietnam J. Math. 32 (2004), 97–103. MR 2120634
Reference: [16] D. Q. Jiang, J. Y. Wang: A generalized periodic boundary value problem for the one-dimensional $p$-Laplacian.Ann. Polon. Math. 65 (1997), 265–270. MR 1441181, 10.4064/ap-65-3-265-270
Reference: [17] A. C. Lazer, S. Solimini: On periodic solutions of nonlinear differential equations with singularities.Proc. Amer. Math. Soc. 99 (1987), 109–114. MR 0866438, 10.1090/S0002-9939-1987-0866438-7
Reference: [18] Liu Bing: Periodic solutions of dissipative dynamical systems with singular potential and $p$-Laplacian.Ann. Pol. Math. 79 (2002), 109–120. Zbl 1024.34037, MR 1957886, 10.4064/ap79-2-2
Reference: [19] J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.Topological Methods for Ordinary Differential Equations, M. Furi, P. Zecca (eds.), Lecture Notes in Mathematics, Vol. 1537, Springer, Berlin, 1993, pp. 74–142. Zbl 0798.34025, MR 1226930
Reference: [20] R. Manásevich, J. Mawhin: Periodic solutions for nonlinear systems with p-Laplacian-like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038, 10.1006/jdeq.1998.3425
Reference: [21] J. Mawhin: Periodic Solutions of Systems with $p$-Laplacian-like Operators.Nonlinear Analysis and its Applications to Differential Equations, M. R. Grossinho, M. Ramos, C. Rebelo, L. Sanchez (eds.), Progress in Nonlinear Differerential Equations and their Applications, Vol. 43, Birkhäuser, Boston, 2001, pp.  37–63. Zbl 1016.34042, MR 1800613
Reference: [22] P. Omari, W. Y. Ye: Necessary and sufficient conditions for the existence of periodic solutions of second order ordinary differential equations with singular nonlinearities.Differ. Integral Equ. 8 (1995), 1843–1858. Zbl 0831.34048, MR 1347985
Reference: [23] I. Rachůnková, M. Tvrdý: Second-order periodic problem with $\phi $-Laplacian and impulses.Nonlinear Anal., Theory Methods Appl. 63 (2005), e257–e266. 10.1016/j.na.2004.09.017
Reference: [24] I. Rachůnková, M. Tvrdý: Periodic problems with $\phi $-Laplacian involving non-ordered lower and upper functions.Fixed Point Theory 6 (2005), 99–112. MR 2133109
Reference: [25] I. Rachůnková, M. Tvrdý, I. Vrkoč: Existence of nonnegative and nonpositive nolutions for second order periodic boundary value problems.J. Differential Equations 176 (2001), 445–469. MR 1866282, 10.1006/jdeq.2000.3995
Reference: [26] I. Rachůnková, M. Tvrdý, I. Vrkoč: Resonance and multiplicity in periodic BVPs with singularity.Math. Bohem. 128 (2003), 45–70. MR 1973424
Reference: [27] S. Staněk: Periodic boundary value problem for second order functional differential equations.Math. Notes (Miskolc) 1 (2000), 63–81. MR 1793262, 10.18514/MMN.2000.19
Reference: [28] P. J. Torres: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem.J. Differential Equations 190 (2003), 643–662. Zbl 1032.34040, MR 1970045, 10.1016/S0022-0396(02)00152-3
Reference: [29] P. Yan: Nonresonance for one-dimensional $p$-Laplacian with regular restoring.J. Math. Anal. Appl. 285 (2003), 141–154. Zbl 1037.34037, MR 2000145, 10.1016/S0022-247X(03)00383-4
Reference: [30] M. R. Zhang: Periodic solutions of Liénard equations with singular forces of repulsive type.J. Math. Anal. Appl. 203 (1996), 254–269. Zbl 0863.34039, MR 1412492, 10.1006/jmaa.1996.0378
Reference: [31] M. R. Zhang: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian.Nonlinear Anal., Theory Methods Appl. 29 (1997), 41–51. Zbl 0876.35039, MR 1447568, 10.1016/S0362-546X(96)00037-5
Reference: [32] M. R. Zhang: A relationship between the periodic and the Dirichlet BVPs of singular differential equations.Proc. Roy. Soc. Edinburgh Sect. A 128A (1998), 1099–1114. Zbl 0918.34025, MR 1642144
.

Files

Files Size Format View
MathBohem_131-2006-3_7.pdf 389.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo