Previous |  Up |  Next

Article

Title: Differential equations in metric spaces (English)
Author: Tabor, Jacek
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 353-360
Summary lang: English
.
Category: math
.
Summary: We give a meaning to derivative of a function $u\:\mathbb{R}\rightarrow X$, where $X$ is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space ${\mathcal T}_xX$ of $x \in X$. Let $u,v\:[0,1) \rightarrow X$, $u(0)=v(0)$ be continuous at zero. Then by the definition $u$ and $v$ are in the same equivalence class if they are tangent at zero, that is if \[ \lim _{h \rightarrow 0^+} \frac{d(u(h),v(h))}{h}=0. \] By ${\mathcal T}_xX$ we denote the set of all equivalence classes of continuous at zero functions $u\:[0,1) \rightarrow X$, $u(0)=x$, and by ${\mathcal T}X$ the disjoint sum of all ${\mathcal T}_xX$ over $x \in X$. By $u^{\prime }(t) \in {\mathcal T}_{u(t)}X$, where $u\:\mathbb{R}\rightarrow X$, we understand the equivalence class of a function $[0,1) \ni h \rightarrow u(t+h) \in X$. Given a function ${\mathcal F}\:X \rightarrow {\mathcal T}X$ such that ${\mathcal F}(x) \in {\mathcal T}_x X$ we are now able to investigate solutions to the differential equation $u^{\prime }(t)={\mathcal F}(u(t))$. (English)
Keyword: differential equation
Keyword: tangent space
MSC: 34-02
MSC: 34A12
MSC: 34A25
MSC: 34A99
MSC: 34G99
MSC: 57R25
idZBL: Zbl 1015.34003
idMR: MR1981539
DOI: 10.21136/MB.2002.134163
.
Date available: 2012-10-05T13:08:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134163
.
Reference: [1] Jean-Pierre Aubin: Mutational equations in metric spaces.Set-Valued Analysis 1 (1993), 3–46. MR 1230367, 10.1007/BF01039289
Reference: [2] Klaus Deimling: Ordinary Differential Equations in Banach Spaces.Springer, Berlin, 1977. MR 0463601
.

Files

Files Size Format View
MathBohem_127-2002-2_22.pdf 317.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo