Previous |  Up |  Next

Article

Title: Phases of linear difference equations and symplectic systems (English)
Author: Došlá, Zuzana
Author: Škrabáková, Denisa
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 3
Year: 2003
Pages: 293-308
Summary lang: English
.
Category: math
.
Summary: The second order linear difference equation \[ \Delta (r_k\triangle x_k)+c_kx_{k+1}=0, \qquad \mathrm{(1)}\] where $r_k\ne 0$ and $k\in \mathbb{Z}$, is considered as a special type of symplectic systems. The concept of the phase for symplectic systems is introduced as the discrete analogy of the Borůvka concept of the phase for second order linear differential equations. Oscillation and nonoscillation of (1) and of symplectic systems are investigated in connection with phases and trigonometric systems. Some applications to summation of number series are given, too. (English)
Keyword: second order linear difference equation
Keyword: symplectic system
Keyword: phase
Keyword: oscillation
Keyword: nonoscillation
Keyword: trigonometric transformation
MSC: 39A05
MSC: 39A10
MSC: 39A11
MSC: 39A12
idZBL: Zbl 1055.39026
idMR: MR2012606
DOI: 10.21136/MB.2003.134182
.
Date available: 2009-09-24T22:09:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134182
.
Reference: [1] C. D. Ahlbrandt, A. C. Peterson: Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, and Riccati Equations.Kluwer Academic Publ., Boston, 1996. MR 1423802
Reference: [2] M. Bohner, O. Došlý: Disconjugacy and transformations for symplectic systems.Rocky Mountain J. Math. 27 (1997), 707–743. MR 1490271, 10.1216/rmjm/1181071889
Reference: [3] M. Bohner, O. Došlý: Trigonometric transformations of symplectic difference systems.J. Differential Equations 163 (2000), 113–129. MR 1755071, 10.1006/jdeq.1999.3728
Reference: [4] M. Bohner, O. Došlý, W. Kratz: A Sturmian theorem for recessive solutions of linear Hamiltonian difference systems.Applied Math. Letters 12 (1999), 101–106. MR 1749755
Reference: [5] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung.Hochschulbücher für Mathematik. Band 67. VEB, Berlin, 1967; Linear Differential Transformations of the Second Order, The English Univ. Press, London, 1971. MR 0236448
Reference: [6] O. Došlý: Phase matrix of linear differential systems.Čas. Pěst. Mat. 110 (1985), 183–192. MR 0796568
Reference: [7] O. Došlý, R. Hilscher: Linear Hamiltonian difference systems: transformations, recessive solutions, generalized reciprocity.Dynamical Systems and Applications 8 (1999), 401–420. MR 1722970
Reference: [8] F. Neuman: Global Properties of Linear Ordinary Differential Equations.Mathematics and Its Applications (East European Series), Kluwer Acad. Publ., Dordrecht, 1991. Zbl 0784.34009, MR 1192133
Reference: [9] S. Staněk: On transformation of solutions of the differential equation $y^{\prime \prime }=Q(t)y$ with a complex coefficient of a real variable.Acta Univ. Palack. Olomucensis, F.R.N. 88 Math. 26 (1987), 57–83. MR 1033331
Reference: [10] P. Šarmanová: Otakar Borůvka and Differential Equations.PhD. thesis, MU, Brno, 1998.
.

Files

Files Size Format View
MathBohem_128-2003-3_6.pdf 379.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo