Previous |  Up |  Next

Article

Title: A necessary and sufficient condition for the primality of Fermat numbers (English)
Author: Křížek, Michal
Author: Somer, Lawrence
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 3
Year: 2001
Pages: 541-549
Summary lang: English
.
Category: math
.
Summary: We examine primitive roots modulo the Fermat number $F_m=2^{2^m}+1$. We show that an odd integer $n\ge 3$ is a Fermat prime if and only if the set of primitive roots modulo $n$ is equal to the set of quadratic non-residues modulo $n$. This result is extended to primitive roots modulo twice a Fermat number. (English)
Keyword: Fermat numbers
Keyword: primitive roots
Keyword: primality
Keyword: Sophie Germain primes
MSC: 11A07
MSC: 11A15
MSC: 11A41
MSC: 11A51
idZBL: Zbl 0993.11002
idMR: MR1970256
DOI: 10.21136/MB.2001.134197
.
Date available: 2009-09-24T21:53:50Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134197
.
Reference: [1] Burton, D. M.: Elementary Number Theory, fourth edition.McGraw-Hill, New York, 1998.
Reference: [2] Crandall, R. E., Mayer, E., Papadopoulos, J.: The twenty-fourth Fermat number is composite.Math. Comp. (submitted).
Reference: [3] Křížek, M., Chleboun, J.: A note on factorization of the Fermat numbers and their factors of the form $3h2^n+1$.Math. Bohem. 119 (1994), 437–445. MR 1316595
Reference: [4] Křížek, M., Luca, F., Somer, L.: 17 Lectures on Fermat Numbers. From Number Theory to Geometry.Springer, New York, 2001. MR 1866957
Reference: [5] Luca, F.: On the equation $\phi (|x^m-y^m|)=2^n$.Math. Bohem. 125 (2000), 465–479. Zbl 1014.11024, MR 1802295
Reference: [6] Niven, I., Zuckerman, H. S., Montgomery, H. L.: An Introduction to the Theory of Numbers, fifth edition.John Wiley and Sons, New York, 1991. MR 1083765
Reference: [7] Szalay, L.: A discrete iteration in number theory.BDTF Tud. Közl. VIII. Természettudományok 3., Szombathely (1992), 71–91. (Hungarian) Zbl 0801.11011
Reference: [8] Wantzel, P. L.: Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas.J. Math. 2 (1837), 366–372.
.

Files

Files Size Format View
MathBohem_126-2001-3_1.pdf 371.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo